Matching Algebraic Expressions

1. Cut out the 9 equilateral triangles along the dotted lines.
2. Match the equivalent algebraic expressions:

Example: $\frac{24 y z^{5}}{-6 y z}=\frac{24 \times y \times z \times z x z x z x z}{-6 \times y \times z}$

$$
=-4 z^{4}
$$

3. Record your working out in your book.
4. Fit the equilateral triangles together to make one large triangle. The shaded sections mark the edges of the triangle.

Angle Fit

Carefully cut out the following shapes.

1. By looking at the size of the angles, fit them in this rectangle.

2. Calculate angles $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d}.
$\mathbf{a}=$
$b=$
C $=$
$d=$
© RBKC SMILE 2001

Approximate Solutions

1. What is 46×17 ?

Give a rough answer, using the same method. What calculation did you use?
2. Copy and complete this table:

calculations	rough calculations	rough answers
$583 \div 18$	$600 \div 20$	30
408×68		
$875 \div 23$		
79×22		
$576 \div 27$		
67×81		

3. Choose your own rough calculations to complete this table:

calculations	rough calculations (approximations)	rough answers (approximate solutions)
71×88		
$383 \div 53$		
49×48		

4. Here is a problem ...
... and some calculations.

a) Which two calculations must be wrong?
b) Which two calculations give approximate solutions to the problem?
c) Which calculation would you use?
5. Copy and complete this table in your book.

	problems	calculations	approximations	approximate solutions
a)	There are 36 eggs in a tray. A box of eggs contains 12 trays of eggs. About how many eggs are in a box?			

6. A job pays $£ 214$ per week.

About how much is this in one year (52 weeks)?
7. Each student needs 27 centicubes to build a larger cube.

There are 29 students in the class.
About how many centicubes are needed?
8. One pint of milk is sufficient for 22 cups of tea.

About how many pints are needed for 485 cups of tea?

Rotational and line symmetry review

An activity for two. You will both need a copy of this worksheet.

Some shapes have line symmetry	Some shapes have rotational symmetry	Some shapes have both
have neither		

On your own:

- Cut out the shapes below.
- Arrange them in the correct regions on the Venn diagram.

1. On your own:

- Compare your answers.
- When you have agreed, stick them down.
- Draw 4 shapes of your own, one to go in each region.

© REKC SMILE 2001

Right-angle or not?

You will need tracing paper.

There are many right-angles around.
For example, the corners of this card are right-angles.

This is a right-angle.

1. Trace the right-angle and place it over the top of the angles to find out which ones are right-angles.
2. Copy and complete the table.

Angle	Right-angle
A	Yes
B	No
C	
D	
E	
F	
G	
H	
I	
J	
K	
L	

3. Draw a right-angle in your book.
4. Find 5 things around your classroom that have right-angles.

Write a list of them in your book.
Check these with your teacher.

Decimal Routes

Start at Start/ and find your way to the End

1. You can only move
 or

2. You can only go into the squares when the answer is 3 or 1.5.
3. Shade in your route as you go along.

Conversion Pack 1

An activity for 2 people

1. Complete the problems on cards A-F. You might find the conversion chart on the back of this envelope helpful.
2. Record your answers in your book. Show your working. Remember to include the units in your answers.
3. You need to know the conversions. Record them in your book and test each other on them.
How many pints?

Match the pairs of cards.

2) 0.265 km
3) 2000 m
4) 1350 mm
e) 265 m
5) 2.65 cm

Who is the heavier?

A rug is 4 foot 5 inches long. How many inches is this?

Two students are doing a science experiment.

They take 57 ml

> from a 1 litre measuring beaker.

The hand baggage allowance on the flight to Kenya is 5 kg .

Tim's bag contains:

Is Tim's bag too heavy?

Higher decimal win

A game for 2 players.
You will need the SMILE Decimal Playing Cards.
Take out the 13 cards with 'Squares' and the 13 cards with 'Numbers'.
Shuffle the cards.
Deal the cards, face down, in front of you.

Each player turns over one card.
The player with the higher decimal wins that round and keeps both cards.
Carry on until you have used all the cards.
The player with the most cards wins.

Variation

Try turning over 2 cards at a time, adding the two numbers together. The player with the higher decimal wins.

Decimal differences

A game for 2 players.

You will need the SMILE' Decimal Playing Cards.
Take out the 13 cards with 'Squares' and the 13 cards with 'Numbers'. Shuffle the cards.

Deal the cards, face down, in front of you.

Each player turns over one card.
The player with the higher decimal wins that round, and their score is the difference between the two decimals.

e.g.

0.3

Talia scores 0.3

Record your results.

Talia	Janice
$0.7-0.4=0.3$	

Carry on until you have used all the cards.
Total each player's score.
The player with the higher score wins.

Sixteen Quadrilaterals

Definition: Congruent

Congruent shapes have the same shape and size.
e.g. These quadrilaterals are congruent.

You can make 16 different quadrilaterals on a 9 point grid.

1. Find all 16 quadrilaterals.
(Remember none of your quadrilaterals can be congruent.)

- draw them
- label each quadrilateral with the correct mathematical name

(You may like to use Smile 2163 Geometry Facts to find all the names of your quadrilaterals.)

2. You may like to investigate ...

- triangles on a 9 point grid
- other polygons on a 9 point grid.

Sixteen Quadrilaterafs

Definition: Quadrilateral

Quadrilaterals are polygons with four straight sides.

Definition: Congruent

Congruent shapes have the same shape and size. e.g. These quadrilaterals are congruent.

You can make 16 different quadrilaterals on a 9 point grid.

1. Find all 16 quadrilaterals.
(Remember none of your quadrilaterals can be congruent)

- draw them
- label each quadrilateral with the correct mathematical name

(You may like to use Smile 2163 Geometry Facts to find all the names of your quadrilaterals)

2. You may like to investigate ...

- triangles on a 9 point grid
- other polygons on a 9 point grid

Matching decimals

You will need the SMILE Decimal Playing Cards.
Take out the 13 cards with 'squares'.

Put them in order of size smallest first.

Take out the 13 cards with 'Numbers'.

Match them to the 'Squares' cards.

smallest

largest

Number 1.0
lequin N

In your book:

1. Write the numbers out in order of size, smallest first.
2. Which is the larger
0.8 or 0.5 ?
3. Which is the smaller
0.72 or 0.65 ?
4. Which is the largest
$0.8,0.08$ or 0.75 ?
5. Write a number that comes between
0.5 and 0.8 .
6. Write a number that comes between 0.35 and 0.4.

Decimal Sort

You will need the SMILE Decimal Playing Cards.

1. Find these 4 cards.

These cards show the same decimal expressed in four different ways.
This is the 0.7 decimal 'set'.
2. Sort the remaining cards into decimal 'sets'.
3. Show the decimal 'sets' to your teacher.
© RBKC SMILE Mathematics 2005

Decimal Sort

You will need the SMILE Decimal Playing Cards.

1. Find these 4 cards.

These cards show the same decimal expressed in four different ways.
This is the 0.7 decimal 'set'.
2. Sort the remaining cards into decimal 'sets'.
3. Show the decimal 'sets' to your teacher.

Decimals sOrt

You will need the SMILE Decimal Playing Cards.

1. Find these 4 cards.

Number
0.62

These cards show the same decimal expressed in four different ways. This is the 0.62 decimal 'set'.
2. Sort the remaining cards into decimal 'sets'.
3. Show the decimal 'sets' to your teacher.

Conversion Pack 2

An activity for 2 people

1. Complete the problems on cards A - F. You might find the conversion chart on the back of this envelope helpful.
2. Record your answers in your book. Show your working. Remember to include the units in your answers.
3. You need to know the conversions. Record them in your book and test each other on them.

Which is the cheaper petrol?

Which contains more liquid?

Which is longer ...

One Yard?

or

One Metre?

How much should a 5 kg bag of potatoes cost?

Andy is making mackerel paté

Recipé
 Smoked mackerel................ $60 z$
 Cottage cheese 60Z Lemonjuice

Is this enough cottage cheese?

An activity for 2-4 people.
You will need Smile 2226 Sum Number Cards and 20 counters of the same colour for each player.

1. In your book write down these numbers to the nearest 10.
a) 57
b) 33
c) 45
d) 9
e) 82
f) 55
g) 14
h) 98
2. Turn over to play the Rounding to 10 Game.

Rounding to 10 Game

This is a game for $2-4$ players.
Take out all the 3, 4, 5, 6, 7, 8 and 9 cards from Smile 2226 Sum Number Cards and 20 counters of the same colour for each player.

The Rules:

- Shuffie the cards.
- Place the cards face down.
- Take turns to turn over 2 cards.
- Multiply the two numbers together and round the answer to the nearest 10.
- Use a counter to cover up your rounded number on the board.
- The winner is the first player to get 3 in a line.
- Play the game several times.

Example:

24 rounded to the nearest 10 is 20.
The counter can cover any 20 on the board.

48 rounded to the nearest 10 is 50 .
The counter can cover any 50 on the board.

10	30	20	10	30	40	20
20	10	80	40	60	10	30
50	60	70	20	10	50	40
10	30	10	20	30	20	10
40	30	50	70	10	50	40
60	20	80	40	60	50	10
20	10	40	20	30	10	20

Powers of Tem flags

1) Fill in the flags to show which operation you need to use.

2) Fill in the flags and the circles.

3) This one is more challenging!

1	2	3	4	5	6	7	8	9	10

The numbers above can be used to make two pairs of equivalent fractions. No number can be used more than once.
example:

1. a) Find another way of making two pairs of equivalent fractions using the numbers 1 to 10.
b) Which numbers are not used?
2. a) How many equivalent fraction pairs can you make using the numbers 1 to 20 ?

Remember: No number can be used more than once.
b) Which numbers are not used?

Why?

Polygons in Circles

You will need 1 cm dotted isometric paper and a pair of compasses.

1. a) Draw a circle radius 4 cm on isometric paper. There should be 6 points on the circumference of the circle.

b) Using these 6 points and the centre of the circle, construct a right-angled triangle.
c) Draw the dotted lines and explain why $\angle B A C=60^{\circ}$ and $\angle A B C=30^{\circ}$

2. By drawing similar circles construct the following polygons and work out the angles in the polygons. You might like to use Smile 2163 Geometry Facts.
a) An equilateral triangle.
b) An isosceles triangle.
c) A rectangle.
d) A trapezium.
e) An arrowhead.
f) A rhombus.
g) A hexagon.
h) A pentagon.
3. Which of your polygons are cyclic?

Definition of a cyclic polygon:

Any polygon whose vertices all lie on the circumference of a circle is called a cyclic polygon.

Polygons in Circles

You will need 1 cm dotted isometric paper and a pair of compasse:

1. a) Draw a circle of radius 4 cm on isometric paper.

There should be 6 points on the circumference of the circle.

b) Using these 6 points and the centre of the circle construct a right angled triangle.

c) Draw the dotted lines and explain why $\angle B A C=60^{\circ}$ and $\angle A B C=30^{\circ}$

2. By drawing similar circles construct the following polygons and work out the angles in the polygons. You might like to use Smile 2163 Geometry Facts.
a. An equilateral triangle.
b. An isosceles triangle.
c. A rectangle.
d. A trapezium.
e. An arrowhead.
f. A rhombus.
g. A hexagon.
h. A pentagon.

Definition of a cyclic polygon:
Any polygon whose vertices all lie on the circumference of a circle is called a cyclic polygon.
3. Which of your polygons are cyclic.

Areas of Polygons

1. Calculate the areas of the polygons below.

Area $=$ \qquad

Area $=$ \qquad

Area $=$ \qquad

2. Sort the polygons in order of area, largest first.
3. Design 3 more polygons on the 4×4 grids below and find their area.

Solid Expressions

This cuboid has height h, width \boldsymbol{w} and length l.

An expression for the volume of this cuboid is $\boldsymbol{h w l}$. An expression for the surface area of this cuboid is $2(h w+h l+w l)$.
An expression for the total edge length of this cuboid is $\mathbf{4}(h+w+l)$.

1. This right-angled triangular prism has height h, width w and length l.

Work out:
a) An expression for the volume.
b) An expression for the surface area.
c) An expression for the total edge length.
2. This cylinder has diameter \boldsymbol{d} and height \boldsymbol{h}.

a) Show that the surface area of the cylinder can be expressed as $\frac{\pi d^{2}}{2}+\pi d h$
Work out:
b) An expression for the volume.
c) An expression for the total edge length.
3. This equilateral triangular prism has width \boldsymbol{w} and length l.
r

a) Show that the volume of this prism can be expressed as $\frac{\sqrt{3} l w^{2}}{4}$
Work out:
b) An expression for the surface area.
c) An expression for the total edge length.
4. Copy and complete this table:

	Cuboid	Rightangled triangular prism	Cylinder	Equilateral triangular prism
Diagram				
Volume	hwl			$\frac{\sqrt{3} l w^{2}}{4}$
Surface area	$2(h w+h l+w l)$		$\frac{\pi d^{2}}{2}+\pi d h$	
Total edge length	4(h+w+l)			

5. Look carefully at the expression for each of the solids. How would you decide if an expression described:
a) volume?
b) surface area?
c) total edge length?
6. The regular hexagonal prism below has the dimensions shown.

The three expressions for the hexagonal prism are:
$6 l w+3 \sqrt{3} w^{2}$
$12 w+6 l$
$\frac{3 \sqrt{3} l w^{2}}{2}$
a) Which of the three expressions describes the volume of the regular hexagonal prism?
b) Which of the three expressions describes the surface area of the regular hexagonal prism?
c) Which of the three expressions describes the total edge length of the regular hexagonal prism?

Angles in a Regular Hexagon

The regular hexagon below is drawn on isometric dotted paper.
Find all the unmarked angles.

Nine Nine Nine

1. Copy and complete the following multiplication sequences.

2. Write about your methods. How did you work out the sequences?
3. Do your methods still work for:

| $10 \times 9=$ |
| :--- | :--- | :--- |
| $11 \times 9=$ |
| $12 \times 9=$ |
| $13 \times 9=$ |
| $10 \times 99=$ |
| $11 \times 99=$ |
| $12 \times 99=$ |
| $13 \times 99=$ |\quad| $10 \times 999=$ |
| :--- |
| $11 \times 999=$ |
| $12 \times 999=$ |
| $13 \times 999=$ |

Multiplication Review

An activity for 2 or more people

In this pack there are five methods of multiplication.

For each one:

1. Look at the method of multiplication.
2. Describe what was done.
3. Check that the method works by trying it out on 27×69.
4. Try to work out why the method works.

$52 \times 37=$?

1. Look at this method of multiplication.
2. Describe what was done.
3. Check that this method works by trying it out on 27×69.
4. Try to work out why the method works.

$52 \times 37=$?

$1500+350+60+14=1924$

1. Look at this method of multiplication.
2. Describe what was done.
3. Check that this method works by trying it out on 27×69.
4. Try to work out why the method works.

$52 \times 37=$?

$$
\begin{aligned}
& 52 \times 10=520 \\
& 52 \times 20=1040 \\
& 52 \times 40=2080 \\
& 52 \times 3=156
\end{aligned}
$$

$52 \times 37=1924$

1. Look at this method of multiplication.
2. Describe what was done.
3. Check that this method works by trying it out on 27×69.
4. Try to work out why the method works.

$52 \times 37=$?

1. Look at this method of multiplication.
2. Describe what was done.
3. Check that this method works by trying it out on 27×69.
4. Try to work out why the method works.

$52 \times 37=$?

1924

1. Look at this method of multiplication.
2. Describe what was done.
3. Check that this method works by trying it out on 27×69.
4. Try to work out why the method works.

.Multiples of Ten

The multiples of a number are the numbers that appear in its multiplication table.

Example:

The multiples of 10 are $\mathbf{1 0}, \mathbf{2 0}, \mathbf{3 0}, \mathbf{4 0}, \ldots$

1. This number square contains pairs of numbers next to each other whose sum is a multiple of 10.

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

Example:

12
18

$12+18=30$

Find and mark five other pairs of numbers whose sum is a multiple of 10.
2. On this grid mark the three groups of numbers in this shape

whose sum is a multiple of 10.

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

3. On this grid mark the five groups of numbers in this shape

whose sum
is a multiple of 10 .

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

4. On this grid mark the two groups of numbers

whose sum
is a multiple of 10 .

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

5. On this grid mark the four groups of numbers

6. On this grid mark the four groups of numbers in this shape

whose sum
is a multiple of 10 .

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

7. What other groups of numbers can you find whose sum is a multiple of 10? Mark them on the grid below.

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

Six Pyramids

An activity for a small group.
This 6 cm cube has been divided into six congruent pyramids.

Calculate the dimensions of each pyramid ...
... and use these dimensions to make six pyramids. Stick them onto the net of a 6 cm cube.

Check that your pyramids fold back into a cube.

Now fold the cube net so that the pyramids are on the outside.

Solve the problems below for your new solid.
For each problem assume there are no hollow spaces inside the solid.

What is the volume of the new solid?

Has the new solid got 12 faces or 24? Justify your answer.

What is the surface area of the new solid?

Can you draw a net for the new solid using ruler and compasses only?

Percentage Puzzle

You will need: scissors, glue

- Cut out the numbers at the bottom of this sheet.
- Place them on the sheet to make four true statements.
- Do not stick them down until you are sure that all four statements are true.

Consecutive Products

Consecutive numbers lie next to each other on the number line.

The product of two numbers is found by multiplying them together.
Example:
The product of 6 and 12 is 72 because $6 \times 12=72$

Example:

42 is the product of two consecutive numbers.

$$
6 \times 7=42 \quad 6 \quad 7
$$

1. Copy the following and find the two missing consecutive numbers.
a)

d)

e)

f)
462

g) 306

h)

i)
210

j)

k) $\mathbf{3 7 8 2}$

I)

2. Copy the following and find the three missing consecutive numbers.
a)

Matching Weights

You will need: glue, scissors

1. Cut out the weights at the bottom of this worksheet and match them to the objects.
2. Show each weight on the scales.

- Sensible Answers

Do not use a calculator.

Problem:

18 people are going to Southwold by car.
Four people can fit in each car.
How many cars are needed?

Method:

$18 \div 4=4.5$
The answer to 18 divided by 4 is between 4 and 5 . If you gave the answer 4 only 16 people could go. 2 people would be left behind.

So the sensible answer is 5 cars.

The sensible answer depends upon the original problem.

Solve the problems below.
For each problem, show your method and make sure that your answer is sensible.

1. 169 students are going on a school trip to Margate. Each coach can carry 50 students.

How many coaches will be needed?

2. A football club has 49 members: A football team needs 11 players.

How many teams can the football club field?

3. A tin of paint covers 25 square metres.

How many tins of paint will you need to cover 1.16 square metres?

4. Milk is sold in crates of 12 identical bottles.

A wholesaler has 102 identical bottles.
How many crates can she make up?

5. Exercise books are sold in packets of 10 . Ms Kershaw wants to order exercise books for 67 students.

How many packets of books does Ms Kershaw need to order?

6. Jameela wants to record her favourite television programme.
Each episode lasts 40 minutes.
How many episodes can she record on a 3 hour tape.

- ロ

Decimal Places Match

The number on the calculator shows This can be approximated to:

```
4.4375312
```


Match each calculator answer to its three approximations.

Number Stories

1. Here are two other calculations.

8-5+2

$$
6+5-4
$$

Use the sentences below to make a number story for each calculation. Write them down in your book.

2. Here are two more calculations. Use the sentences below to make a number story for each calculation. Write them down in your book.

$$
6 \times 2-5 \quad 10 \div 2-4
$$

3. Make up number stories for each of these calculations and show them to your teacher.

$$
8-3+7
$$

$$
4 \times 3+6
$$

Circle Cut

In the diagram below, the radius of each small semicircle (\mathbf{r}) is half the radius of the outer circle (R).

Make one straight cut across the circle so that each of the two regions is exactly halved.

Use algebra to justify your answer.

Play Your Cards Right

A game for four players in two teams.
You will need a set of number cards (digits between 0 and 9) and the targets from worksheet 2401a.

The Rules

Shuffle the number cards.
Deal each team five number cards.
Place the targets face down in a pile.
Turn over the first target.
Use any three of the number cards to get as close to the target as possible.

The team who gets the closest scores one point.
Place the used number cards at the bottom of the pack and replace them with three new cards.

Turn over the next target and repeat the game.
The team with the highest score wins.

Equivalent Fractions Sort

1. Shade the fractions of the circles below.

2. Cut out all the fractions and arrange them in order of size.
3. Which of the fractions are equivalent? (equivalent fractions represent the same proportion).
4. Find 2 fractions which are equivalent to $\frac{3}{4}$.

Missing the Point

Example:

Sheila saw this addition and realised that one of the numbers being added had a decimal point either missing or in the wrong place.

$$
53.7+1.26=66.3 \quad x
$$

She rewrote the addition correctly.

$$
53.7+12.6=66.3
$$

Do not use a calculator.

In each of the calculations below, one and only one of the decimal points is either missing or in the wrong place.

A Rewrite these additions to make them correct.

1. $40.5+24.05=28.1$
2. $5.8+74=13.2$
3. $7+4=4.7$
4. $7.77+7.07=84.77$
5. $4.5+0.55=1$
6. $0.003+7=7.3$

B Rewrite these subtractions to make them correct.

1. $45-1.95=2.55$
2. $6.05-3.12=57.38$
3. $4.9-4.9=44.1$
4. $5-0.01=0.49$
5. $1.23-122.9=0.1$
6. $6-3.12=56.88$

List of abbreviations on 2001 SMILE Network

ANGLE	SMILE software 'Angle Estimation' available from SMILE Mathematics
COORD	SMILE software 'Co-ordinates' available from SMILE Mathematics
DfEE	SMILE software Ref: 0260/2000 available from DfEE
DIME	A variety of materials available from Tarquin
ENRICH	SMILE software 'Co-ordinates' available from SMILE Mathematics
GRAPH	SMILE software 'Graphing' available from SMILE Mathematics
INVEST	SMILE software 'Investigation' available from SMILE Mathematics
INVEST Pgxx	Page number from Student's Handbook 'Investigation' available from SMILE Mathematics
MA Poster	Poster available from Mathematics Association
MATH PUZ	SMILE software 'Mathematical Puzzles' available from SMILE Mathematics
MOVE	SMILE software 'Movement' available from SMILE Mathematics
MOVE Pgxx	Page number from Student's Handbook 'Movement' to be printed from the CD available from SMILE Mathematics
NUM	CD 'Numeracy' available from SMILE Mathematics
PROP/NO	CD 'Properties of Number' available from SMILE Mathematics
PROP/NO Pgxx	Page number from Student's Handbook 'Properties of Number' to be printed from the CD available from SMILE Mathematics
SENSE/NO	SMILE software 'Sense of Number' available from SMILE Mathematics
SENSENO Pgx	xPage number from Student's Handbook 'Sense of Number' to be printed from the CD available from SMILE Mathematics
TARQUIN Post	Poster available from Tarquin

List of Commercial Referenced activities in SMILE number order.
0581 Using a Mirror (DIME - Rellection Activities PP)
0778 Tangram Tree (MA Poster)
0906 Tak Tiles A (DIME - TakTiles PP3)
0907 Tak Tiles B (DIME-TakTiles PP3)
0908 Tak Tiles C (DIME - TakTiles PP3)
0909 Tak Tiles D (DIME - TakTiles PP3)
1331 Equal Angles (DIME - The Rotagram PP)
1332 Rotations (DIME - The Rotagram PP)
1333 Directions (DIME - The Rotagram PP)
1334 Recognising Solids (DIME-3-D Sketching PP)
1335 Sketching Solids (DIME - 3-D Sketching PP)
1336 Turning and Toppling (DIME -3-D Sketching)
1337 Reflections (DIME - 3-D Sketching PP)
1338 Wedges (DIME-3-D Sketching PP)
1339 Flags (DIME - Pre-Algebra PP)

1341 Number Machines (DIME - Pre-Algebra PP)
1342 Mappings and Graphs (DIME - Pre-Algebra)
1343 Simple Mappings (DIME - Pre-Algebra PP)
1344 Further Mappings (DIME - Pre-Algebra PP)
1354 Euler Solids (MA Poster)
1482 Tricky Sum (MA Poster)
1604 Nim (SMILE software Mathematical Puzzles)
1605 Guess (SMILE software Sense of Number)
1606 GuessD (SMILE software Sense of Number)
1607 Elephant (SMILE soltware Co-ordinates)
1608 Reverse (SMILE software Mathematical Puzzles)
1609 Maze (SMILE sottware Movement)
1620 Bounce (DfEE)
1621 Rhino (SMILE software Co-ordinates)

1622 Vectmeet (SMILE software Movement)
1624 Snooker (SMILE sottware Angle Estimation)
1625 Box (SMILE sotware Sense of Number)
1626 Boat (SMILE sottware Mathematical Puzzles)
1641 Lines (SMILE sotware Co-ordinates),
1650 Take Part (Software - DIEE)
1651 Frog (SMILE sottware Mathematical Puzzles)
1652 Jugs (SMILE sottware Mathematical Puzzles)
1653 Master(SMILE sottware Mathematical Puzzles)
1654 Racegame (SMILE software Movement)
1666 Tower (SMILE software Sense of Number)
1667 Pilot (SMILE software Moverment)
1691 Predict (SMILE sotware Mathematical Puzzles)
1702 Circle (SMILE software Investigations)
1708 Factor (SMILE sottware Properties or Number)
1714 Queens (SMILE Properties of Number Students' HBPg 35)
1715 Locate (SMILE software Co-ordinates)
1718 Line Symmetry A 1-4 (Dime - Line Symmetry Puzzles A PP5A)
1719 Line Symmetry A 5-10 (DIME-Line Symmetry Puzzles A PP5A)
1721 Angle 90° (SMILE software Angle Estimation)
1728 BoxD (SMILE sottware Sense of Number)
1729 Minimax (SMILE sottware Sense of Number)
1730 Wall (SMILE software Sense of Number)
1731 Rose (SMILE sottware Investigations)
1732 3D Maze (SMILE software Movement)
1745 Identify (SMILE software Properties of Number)
1746 Define (SMILE software Properties of Number)
1747 Darts (SMILE sottware Numeracy)
1755 Hopslide (SMILE software Mathematical Puzzies)
1756 Tadpoles (SMILE soffware Mathematical Puzzles)
1767 AddsUpTO (SMILE software Numeracy)
1776 Spirals (SMILE software Investigations)
1777 Avoid each other (SMILE Investigations Students' HB Invest Pg 35)
1778 Jumping (SMILE software Mathematical Puzzles)
1779 Lineover (SMILE soltware Graphing)
1785 Invest. Queens (SMILE Movement Students' HB Pg 35)
1787 Angle 360° (SMILE software Angle Estimation)

1796 Plotter (SMILE sottware Graphing)
1798 Quilts (SMILE software Investigations)
1820 Parallels (SMILE sotware Graphing)
1833 Magic (SMILE software Numeracy)
1834 Tenners (SMILE sotware Numeracy)
1835 Magnify (SMILE sottware Sense of Number)
1836 3inaline (SMILE software Co-ordinates)
1840 PointsAndLines (SMLLE software Graphing)
1841 Interlocking Squares (DIME - Shape
Recognition PP1)
1842 Shapes Jigsaw (DIME - Shape
Recognition PP2)
1851 Regions (SMILE sotware Graphing)
1852 Foxes and Chickens (SMILE sotware Graphing)
1853 Pinball (SMILE software investigations)
1855 Quadratic Mappings (DIME-PreAlgebra PP)
1866 Mirror Match (DIME - Rellection Activities PP)
1876 Fill the Shape (Dime - Build-up PP)
1877 Add a Cube or Two (DIME - Build-up PP)
1878 Two Blocks (DiME - Build-up PP)
1879 Build and Balance (DIME - Build-up PP)
1880 More than Two Blocks (DIME - Build-up PP)
1882 Wedges 1 (DIME - Build-up PP)
1883 Wedges 2 (DIME - Build-up PP)
1889 Regular Tilings 1 (DIME-Regular Tilings Project)

- Use A Triangles, B Convex Quadrilaterals, C Concave Quadrilaterals, E 2 Sizes of Squares.
- For each activity do questions 1-3.

1890 Regular Tilings 2 (DIME-Regular Tilings Project)

- Use F Polygons.
- Do questions 1-4.

1891 Regular Tilings 3 (DIME-Regular Tilings Project)

- Use D Pentagons.
- Do questions 1-3.

1892 Line Symmetry B1-3 (DIME-Line Symmetry Puzzles B PP5B)
1893 Line Symmetry B4-6 (DIME-Line Symmety Puzzles B PP5B)
1894 Line Symmetry B 7-10 (DIME-Line Symmetry Puzzles B PP5B)
1896 Spatial Reasoning (DIME - Spatial Reasoning Puzzles PP7)

1903 Numbers (SMILE software Properties of Number)
1908 Pattern Pack A (DIME - Pattern Pack A PP6A)
1909 Pattern Pack B (DIME - Pattern Pack B PP6B)
1920 Pattern Spotting (SMILE Properties of Number Students' HB Pg 16)
1936 Many Grids (SMILE Properties of NumberStudents' HB Pg 28)
1950 Diagonal Multiples (Students' HB Properties of Number Pg 29)
1961 One Million (TARQUIN Poster)
1966 Curve Stitching (TARQUIN Poster)
1967 One Dice (DIME - Probability Pack A)
1968 Numbers Up (DIME - Probability Pack A)
1969 Two Dice (DIME - Probability Pack A)
1970 Five Beads (DIME - Probability Pack B)
1971 Seven Beads (DIME - Probability Pack B)
2008 Curves of Pursuit (TARQUIN Poster)
2009 Three Counters (DIME - Probability Pack A)
2010 Six Beads (DIME - Probability Pack B)
2011 Four Beads (DIME - Probability Pack B)
2012 Tessellation Poster (TARQUIN Poster)
2014 Probably Probable? (Students' HB Investigations Pg 43)
2073 Tricubes (DIME - Tricube Puzzies Project) - Worksheets A1, A2, A3, A4

2074 Building with Tricubes (DIME - Tricube Puzzles Project)

- Worksheets B2, B6, B10

2075 Tricube Plans (DIME - Tricube Puzzles Project)

- Worksheets C1, C5, C6, C8

2076 Building on a Square (DIME - Tricube Puzzles Project)

- Worksheets D1, D5, D8, D10

2077 Making a $3 \times 3 \times 3$ Cube (DIME - Tricube Puzzles Project)
Worksheets E3, E7, E10
2086 Circles to Polygons (SMILE Investigations Students' HB Pg 10)
2094 Squares (SMILE Investigations Students' HB Pg 4)
2113 Mystery (SMILE 1783 Calculating: Page 3)
21142 Puzzles (SMILE 1783 Calculating: Page 5)
2115 Missing Digit (SMILE 1783 Calculating: Page 8)
2116 Operations (SMILE 1783 Calculating: Page 9)
2117 Rumour (SMILE 1783 Calculating: Page 10)
2118 Ticket Sales (SMILE 1783 Calculating: Page 11)

2119 Patterns (SMILE 1783 Calculating: Pages 12 \& 13)
2120 Productive (SMILE 1783 Calculating: Page 14)
2121 Hot and Cold (SMILE 1783 Calculating: Page 15)
2122 Target 200 (SMILE 1783 Calculating: Page 16)
2123 Missing Signs (SMILE 1783 Calculating: Page 17)
2124 Date of Birth (SMILE 1783 Calculating: Pg18/19)
2125 Escape (SMILE 1783 Calculating: Pages 20 \& 21)
2126 Problems (SMILE 1783 Calculating: Pages 22 \& 23)
2194 Tossing Coins (SMILE Investigations Students' HB Pg $38 / 40$)
2202 Visiting Every Point (SMILE Investigations Students' HB Investi. Pg 8)
2284 BoxN (SMILE software Sense of Number)
2285 GuessN (SMILE software Sense of Number)
2286 Quadrants and Squares (DIME - Algebra through Geometry)

- Worksheets A3, A4

2287 Add and Subtract Squares and Quadranis (DIME - Algebra through Geometry) - Worksheets A5, A6

2288 Algebra Tak-Tiles on a Grid (DIMEAlgebra through Geometry)

- Worksheets B1, B2, B3, B4, B5, B6

2289 Algebra Tak-Tiles without a Grid (DIME

- Algebra through Geometry)
- Worksheets C1, C2, C4, C5, C6

2290 A New Unit of Area (DIME-Algebra through Geometry)

- Worksheets D1, D2, D3, D4, D5, D6

2291 Comparing Areas (DIME-Algebra through Geometry)

- Worksheets E1, E3, E4)

2326 Hanoi (SMILE software Mathematical Puzzles)
2327 Hats (SMILE software Mathematical Puzzles)
2373 Queens (SMILE software Movement)
2377 TenSprint (SMILE soltware Numeracy)
2378 Matching Fractions (SMILE software Numeracy)
2379 Ordering Fractions (SMILE software Numeracy)
2380 NumberLines (SMILE software Numeracy)
2381 NumberLinesD (SMILE software Numeracy)
2393 Equivalent Pair (SMiLE software Enriching Number)
2394 Make that Number (SMILE software Enrich No)
2395 Maximum Remainder (SMILE sotware EnrichNo)
2396 FindTheLine (SMILE software Graphing)
2397 Guess Inequality (SMILE software Graphing)

Additional resources available from SMILE Mathematics

SMILE Mathematics Worksheet Pack

There are 270 photocopiable worksheets. The worksheets are not included in a SMILE Full Class Set or a SMILE Single Copy Set, but are referenced on the SMILE 2001 Network.

Whole class lessons

- Bridging Units
- Nice Ideas in One Place V. 125 whole class activities, suitable for KS3.
- Nice Ideas in One Place V. 220 whole class activities, suitable for KS3.
- Reasoning
- Revision through Groupwork
- Whole Class Maths Projects

2 units suitable for Year 7.

27 whole class activities, suitable for KS3.
9 topics allowing for differentiation.
8 whole class projects, suitable for KS3/4.

Assessment

- Assessment Pack

Assessment activities and tests.
DfEE Available from DfEE Publications www.dfee.gov.uk
Tel: 08450622260
MA Posters Available from Maths Association 259 London Road Leicester
LE2 3BE
Tel: 01162703877

SMILE software Available from SMILE Mathematics 108a Lancaster Road
London
W11 1QS
Tel: $020 \quad 75984841$
TARQUIN Available from Tarquin Publications Stradbroke, Diss Norfolk
IP21 5JB
Tel: 01379384218

ACTIVITY LIST Smile 0001-2403

Abbreviations used, in alphabetical order.

Please contact SMILE Mathematics (020 7598 4841) for a complete list of the commercially referenced materials on the SMILE Network.

0001-0299
0005 Tangram 1

0007	Tangram 3	AT3	Sha	5
0008	Prisms \& Pyramids	AT3	Dra	4
0022	Area 1	АтЗ	A\&P	3
0023	Area 2	АТЗ	A\&P	4
0024	Area 3	АТЗ	A\&P	3
0025	Area 4	AT3	A\&P	4
0027	Number Squares w/s	AT2	Equ	$1 / 2$
0028	Number Squares $2 \mathrm{w} / \mathrm{s}$	AT2	Equ	$1 / 2$
0030	Number Squares $4 \mathrm{w} / \mathrm{s}$	AT2	Add	3
0031	Find the Number $1 \mathrm{w} / \mathrm{s}$	AT2	Equ	1/2
0033	Find the Number $3 \mathrm{w} / \mathrm{s}$	AT2	Equ	3
0034	Find the Number $4 \mathrm{w} / \mathrm{s}$	AT2	Equ	4
0035	Squares and Triangles	AT3	Sha	3
0039	About Angles	AT3	APr	5
0040	Equilateral Triangle	AT3	Sha	4
0046	Domino	AT3	S/En	5
0048	Tetromino	AT3	CTr	4
0050	Dissection 1	AT3	Sha	3
0051	Dissection 2	AT3	Sha	4
0052	Dissection 3	AT3	Sha	4
0053	Dissection 4	AT3	Sha	4
0054	Dissection 5	AT3	Sha	5
0057	Fractions $3 \mathrm{w} / \mathrm{s}$	AT2	Fra	4
0058	Fractions $4 \mathrm{w} / \mathrm{s}$	AT2	Fra	4
0066	Napier's Rods	AT2	Mul	4
0068	Accurate Measuring	AT3	Mea	4
0069	Cardioid w/s	AT2	Seq	4
0070	Isometric Drawing	AT3	3-D	4
0071	Envelopes	AT3	Dra	3
0072	Angles of a Quadriateral	AT3	APr	5
0073	Time/Distance Graph	AT2	UGr	5
0074	Sum \& Product w/s	AT2	Mix	3
0075	Networks	AT3	Top	5
0085	Calculator Problems	AT2	Add	3
0090	More Calculator Problems	AT2	Mul	5
0092	Harder Calculator Problems	AT2	Mix	5
0098	Plaited Cube w/s	AT3	3-D	6
0099	Sum \& Product Again w/s	AT2	Mix	3
0104	Number Puzzle 1	AT2	Add	4
0105	7 Piece Tangram	AT3	Sha	5
0114	Nines w/s	AT2	Pag	3
0115	Columns	AT2	PaG	1/2
0119	Area and Perimeter	AT3	A\&P	5
0120	Chocolate Areas	AT3	A\&P	6
0121	100 Square Patterns w/s	AT2	PaG	1/2
0123	Counter Puzzle	AT4	L\&S	4
0131	Matchstick Puzzles	AT3	PSh	4
0133	Out of Line	AT3	L\&S	4
0142	Volumes of cubes	AT3	SAV	6
0143	Volumes 2	AT3	SAN	6
0144	All out of Line	AT3	TrN	6
0145	Tetraflexagon	AT3	3-D	6
0151	More 100 Square Patterns	AT2	PaG	$1 / 2$
0153	Decimal Calculations	AT2	Dec	7
0155	Calculator Trial and Error	AT2	Mix	7
0159	Angles of a Triangle	AT3	APr	4
0161	The Three Coin Problem	AT4	Pro	6
0162	2, 3, 4, 5	AT2	Mix	7
0164	Patterns with 11 and 13	AT2	Div	4
0165	Cyclic Quadrilateral	AT3	APr	7
0166	Area of a Triangle	AT3	A\&P	5
0167	x for Breakfast	AT2	Map	5
0168	Right Angled Triangles w/s	AT3	A\&P	5
0169	Halfa Rectangle	AT3	A\&P	5
0170	Hex	AT4	L\&S	6
0171	TV Drinks	AT2	Map	3
0172	A Match for Anyone	AT2	Map	4
0173	Mapping Machines	AT2	Map	4

0174	Gelosia	AT2	Mul	5
0177	Shearing a Triangle	AT3	A\&P	6
0178	Rectangles w/s	AT3	A\&P	3
0179	Four 4's	AT2	Mix	$\mathbf{8}$
0181	Alf Mike or Leena	AT2	Map	5
0182	Mappings to Graphs	AT2	Gra	6
0183	Graphs to Mappings	AT2	Gra	6
0184	Number Puzzle w/s	AT2	Equ	6
0185	Which is Larger?	AT3	A\&P	4
0187	x for Tea	AT2	Map	6
0188	Checking Pythagoras	AT3	Trig	6
0189	Looking for Right Angles	AT3	Trig	7
0190	Using Pythagoras	AT3	Trig	7
0191	Pythagoras Problems	AT3	Trig	7

0211	Perpendicular Bisectors	AT3	Dra	
0212	Bisecting an Angle	AT3	Dra	
0213	The Circumcircle	AT3	Dra	6
0214	Using a Ruler	AT3	Mea	1/2
0215	Drawing the Line	AT2	Gra	6
0220	Triangle Numbers 1	AT2	P\&R	
0221	Triangle Numbers 2	AT2	PNo	5
0224	Area of a Parallelogram	AT3	A\&P	6
0226	Shearing Parallelograms	AT3	A\&P	6
0227	Parallelogram Probiems	AT3	A\&P	
0228	From Parallelogram to Rectangle	AT3	A\&P	6
0230	Square Pegs in Round Holes	AT2	P\&R	5
0232	Inscribed Circle	AT3	Dra	6
0233	Rectangle Patterns	AT2	PNo	3
0235	Finding Angles of a Triangle	AT3	APr	5
0236	Triangle Problems	AT3	A\&P	6
0240	Odds and Evens Tables	AT2	PNo	5
0241	A Secret Code	AT2	Map	1/2
0242	Cracking the Code w/s	AT2	Map	3
0244	More Sorting	AT4	L\&S	1/2
0245	Venn Diagrams	AT4	L\&S	3
0248	Making Ten	AT2	Add	1/2
0249	How Many Ways?	AT2	Add	1/2
0250	Less Than More Than	AT2	Or/R	3
0251	Mirror Symmetry w/s	AT3	Ref	3
0255	Points and their Images	AT3	Ref	6
0257	Squidge	AT2	Seq	5
0258	Squidgeree	AT2	Seq	5
0259	Shading Fractions w/s	AT2	Fra	3
0261	Co-ordinates 1	AT3	Coo	3
0262	Co-ordinates 2	AT3	Coo	4
0263	Co-ordinates 3	AT3	Coo	4
0264	Cartoon Co-ordinates w/s	AT3	Coo	4
0265	Odd and Even	AT2	PNo	1/2
0267	Angles of a Polygon	AT3	APr	5
0268	Exterior Angles of Polygons	AT3	APr	5
0269	Finding Exterior Angles	AT3	APr	6
0272	Vehicle Survey w/s	AT4	CDa	3
0273	How Much Longer?	AT3	Mea	4
0281	Angles: The Compass	AT3	Rot	3
0284	Angles from Tessellations	AT3	APr	6
0286	Right-angles	AT3	Ang	3
0288	Rolling Two Dice w/s	AT4	Pro	4
0290	Experiments	AT4	Pro	4
0291	Which Set?	AT4	L\&S	4
0292	Doubling Patterns w/s	AT2	PaG	4
0294	Measuring Lengths	AT3	Mea	3
0295	Nets of a Cube	AT3	Dra	4
0297	More Rectangle Numbers	AT2	PNo	3
0298	Square Numbers	AT2	P\&R	4
0299	Three Squared	AT2	P\&R	5

0307	Factors	AT2	PNo	4
0308	Prime Numbers	AT2	PNo	5
0310	Common Factors	AT2	PNo	5
0311	Factor Finder	AT2	PNo	5
0313	Spots in Sequences	AT2	Seq	3
0314	Dots in Sequences	AT2	Seq	5
0315	Staircases	AT2	Seq	6
16	Counting On w/s	AT2	Seq	3
0317	Sequences of Numbers	AT2	Seq	4
0320	Turning Patterns	AT3	Rot	3
0322	Cutting up Rectangles	AT3	Sha	/2
0323	Metre and Centimetre	AT3	Mea	3
0324	Rotations	AT3	Rot	3
0326	Tessellations of Quadrilaterals	АТЗ	Sha	6
0327	Centres of Rotation w/s	AT3	Rot	5
0330	Multiple Patterns	AT2	PNo	5
0331	Prime Factors	AT2	PNo	6
0333	Equivalent Fractions	AT2	Fra	4
0334	Egyptian Numbers	AT2	PV/N	3
0338	Summing the Odds	AT2	PNo	5
0339	Vector Messages	AT3	TrN	4
0340	Is it Rigid?	AT3	PSh	6
0341	Nodes w/s	AT3	Top	5
0342	About Nodes	AT3	Top	7
0344	Counter Hopping Puzzle	AT2	PaG	7
0346	Sequences in Squares w/s	AT2	Seq	4
0348	Tangram Teasers	АТЗ	Sha	5
0349	Tetrahedron Nets	AT3	Dra	4
0352	Table Squares w/s	AT2	Seq	4
0353	Bowling Tom	AT2	Add	1/2
0354	Tom the Bowling Champ w/s	AT2	Add	3
0355	Bowling Tom's Problem	AT2	Add	3
0359	How Many Colours? w/s	AT3	Top	4
0362	No Brakes Bruce	AT2	UGr	6
0364	Using a Triangle	AT3	PSh	6
0365	A Million	AT2	Mix	5
0366	2-Piece Square	АТЗ	PSh	4
0367	Fraction Wall w/s	AT2	Fra	5
0376	A Hundred	AT2	PV/N	4
0377	VectorSea	AT3	TrN	4
0381	Cuboids from Matchboxes	AT3	SAV	6
0383	Building Shapes w/s	AT2	Seq	5
0384	Changing Grids w/s	AT3	Coo	4
0386	Think of a Number	AT2	Map	4
0388	Power	AT2	P\&R	6
0390	Surfaces w/s	AT4	L\&S	3
0392	Circumference	AT3	Сім	5
0394	Concentric Circles	AT3	Dra	4
0396	Hexagons w/s	AT2	Fra	4
0397	Operations	AT2	Alg	8
0398	$4+3 \times 2$	AT2	Mix	5
0399	Cubes	AT3	SAV	8
0400	Folding Symmetry	AT3	Ref	1/2
0402	Adding Fractions	AT2	Fra	6
0404	Solids w/s	AT3	3-D	3
0406	Two Folds	AT3	Ref	1/2
0411	Hexagon Dissection	AT3	Sha	5
0414	Bi-Fractions	AT2	PV/N	EP
0423	Clock Arithmetic	AT2	PV/N	3
0424	How Many Routes? w/s	AT3	Top	4
0426	Traversable?	AT3	Top	6
0428	One Difference Logichains	AT4	L\&S	3
0429	Squaring	AT2	P\&R	5
0430	Parallel Lines	AT2	Gra	6

0432	Moving Pictures	AT3	CTr	5
0433	Acut/Obtuse	AT3	APr	6
0437	Chess	AT2	PaG	5
0439	Rectangle Diagonal	AT2	PaG	7
0443	Who Won?	AT2	Fra	6
0448	Favourite Colours w/s	AT4	DDa	1/2
0450	Trick or Treat	AT2	Seq	6
0452	Inside or Outside?	AT3	Top	5
0453	What Can I Wear?	AT4	Pro	5
0454	Post Box	АТЗ	Trig	EP
0455	Midpoints	AT3	PSh	5
0456	Midpoint Sequences w/s	AT3	Dra	3
0457	Number Pictures	AT2	Add	1/2
0458	Adding Numbers	AT2	Add	1/2
0459	Adding Shapes	AT2	Add	1/2
0460	Cary on Adding	AT2	Add	3
0461	Venus Clock	AT2	Alg	4
0463	Paper Power	AT2	P\&R	7
0464	Subtracting	AT2	Sub	1/2
0465	Subtraction	AT2	Sub	3
0467	Subtract	AT2	Sub	1/2
0470	Nephroid w/s	AT2	Seq	5
0471	Border Patterns	AT3	TrN	1/2
0472	Sort the Cards	AT4	L\&S	6
0474	Triominoes	AT2	PNo	4
0475	All Change	AT4	L\&S	4
0476	Mapping w/s	AT2	Map	5
0477	Shunting	AT4	L\&S	8
0478	Patterns with Squares	AT3	CTr	1/2
0481	Where's that Town?	AT3	Coo	5
0483	Star Puzzle	AT2	PaG	5
0484	Octahedron Nets	AT3	Dra	5
0485	Pamphlets	AT2	Equ	8
0489	Underground	AT2	Mix	4
0492	The Inseparables	AT3	Top	7
0493	Sam Shape w/s	АТ3	PSh	1/2
0494	All Co-ordinates	AT3	Coo	5
0495	Routey	AT3	Top	5
0496	Junior Contig	AT2	Mix	4
0510	Radar w/s	AT3	Ang	5
0516	Adding Directed Numbers	AT2	DNo	6
0517	Subtracting Directed Numbers	AT2	DNo	7
0518	(Do it first)	AT2	Mix	5
0528	Multiplying	AT2	Mul	4
0549	Marbles	AT2	DNo	5
0550	Adding Shitts w/s	AT2	DNo	5
0557	A Special Number	AT2	PV/N	EP
0560	Symmetrical Cross Cut	AT3	Ref	6
0563	Digit Sum	AT2	Seq	8
0574	Line of Best Fil	AT4	DDa	7
0577	Reflect w/s	AT3	Ref	6
0579	Two Loops	AT4	L\&S	3
0581	Using a Mirror (DIME)	AT3	Ret	6
0585	Three Loops	AT4	L8S	4
0590	Less Marks are Best!	AT3	Mea	7
0591	Counter Placing	AT4	L\&S	6
0592	Powerful Rules	AT2	P\&R	7
0595	Best Fitting Peg	AT3	SAV	EP
0597	Sunita's Day	AT3	Mea	3
0600	In your Mind	AT4	L8S	7
0603	Numbering the Pages	AT2	Pag	6
0614	Powers of Ten w/s	AT2	P\&R	7

0616	The Unknown Square	AT2	Alg	7
0617	Looking Around w/s	AT3	3-D	$1 / 2$
0629	Time Tiles	AT3	Mea	4
0634	Sidings	AT4	Pro	6
0674	A Hungry Death?	AT4	L\&S	5
0675	Cube Cuts	AT3	CTr	7
		AT4	L\&S	5
0677	Logic Maps	AT2	Fra	6
		AT4	Pro	7
0683	Fraction Sort	AT2	Equ	6
0684	Forty Towers			
		AT2	Equ	5
0689	Random Code			
		AT4	Pro	5
0691	And now Swahili	AT3	CTr	4
0694	Which Switches?	AT2	Equ	6
0695	Locate the Error	AT3	PSh	5

0705	Cross Puzzles w/s	AT2	Mix	3
0709	Reflection	AT3	Ref	5
0713	Jumping Jack w/s	AT2	Seq	1/2
0719	Cuboid Nets	AT3	Dra	6
0720	Nets of Pyramids	AT3	Dra	7
0721	Squares Tangram	AT3	Sha	5
0722	Prove It	AT2	Alg	EP
0725	Race Track w/s	AT3	TrN	6
0727	Who's Who?	AT4	L\&S	5
0730	Rotation w/s	AT3	Rot	5
0731	Regular Polygons	AT3	APr	8
0732	Ruler, Pencil, Compass	AT3	Dra	5
0734	Start with a^{2}	AT2	Alg	8
0735	Knots w/s	AT2	Mul	3
0736	Solving Equations	AT2	Equ	7
0737	What Chance?	AT4	Pro	6
0738	Family of Quadrilaterals	AT3	PSh	8
0740	Solve it	AT2	Equ	6
0741	The 38th Triangle Number	AT2	Alg	EP
0743	Solving by Graphs	AT2	Gra	7
0744	Equations and Graphs	AT2	Gra	7
0745	Inverses	AT2	Map	7
0746	Pascal's Triangle	AT4	Pro	7
0748	The Times Crossword	AT2	PNo	7
0749	Three Numbers	AT2	Mix	5
0750	Monopoly	AT4	Pro	6
0752	Repeating Digits	AT2	Div	6
0755	Rectangles to Regions	AT2	Gra	8
0756	Points of Intersection	AT2	Equ	EP
0757	Centigrade and Fahrenheit	AT2	Equ	7
0758	Odd One Out	AT2	Div	5
0760	Quickly to Zero	AT2	Div	6
0761	Orbits	AT3	CiM	7
0772	Angle Estimation	AT3	Ang	5
0775	Measuring Angles	AT3	Ang	4
0776	Drawing Angles	AT3	Ang	4
0777	Satelite Signals w/s	AT3	Ang	5
0778	Tangrams (MA poster)	AT3	Sha	5
0780	Long Mult. Revision	AT2	Mul	5
0781	The Inverse	AT2	Map	5
0782	Number Pattern Proof	AT2	PaG	EP
0783	Cubes from Triangles	AT2	PaG	7
0784	142857 Times Table	AT2	PaG	6
0788	Free Hand Angles	AT3	Ang	5
0789	Gradient	AT2	Gra	8
0791	A Millionaire	AT2	Rat	7
0792	Wage Bargaining	AT2	Per	5
0793	Approximation and π	AT3	CiM	EP
0794	The Trapezium	AT3	A\&P	7
0796	Darts Probability	AT3	CiM	EP
0797	Matrices and Transformations	AT3	CTr	8

0800	Polygons: Interior Angles	AT3	APr	6	1013	Vector Magnitudes	AT3	TrN	8
0804	Inflation	AT2	Per	8	1028	Isometries	AT3	CTr	EP
0805	Average Pack of Workcards	AT4	AIDa	7					
0806	Trapezium to Parallelogram	AT3	A\&P	7					
					1081	Puzzles	AT2	Equ	5
0808	Code Breaking	AT4	AIDa	5					
0809	Fold It	AT3	APr	5	1094	Volume of Prisms	AT3	SAN	7
					1095	Percentages w/s	AT2	Per	5
0812	Irregular Areas	AT3	A\&P	8	1096	Marks to Percentages w/s	AT2	Per	6
0813	Sectors of Circles	AT3	Сім	EP	1097	Fractions to Percentages	AT2	Per	6
0817	Straight Line Graphs	AT2	Gra	7					
0818	Differences Between Squares	AT2	Alg	7					
0819	Prove Your Identity	AT2	Alg	EP					
0820	Equations from Squares	AT2	Alg	EP	1101	Pie Charts	AT4	DDa	6
0824	Golden Rectangle	AT2	Rat	8	1112	Rotation	AT3	Rot	6
0827	Clover Leaf	AT3	Сім	EP	1115	Graphs	AT4	UGr	5
0830	Re-Grouping	AT2	Alg	6	1123	Translation	AT3	TrN	6
0831	Primes and Proof	AT2	PNo	EP					
0832	Short Division	AT2	Div	3	1127	Time-Distance Graphs	AT2	UGr	7
0833	Short Division-Carrying	AT2	Div	4					
0834	Dividing Strips	AT2	Div	3	1130	Journeys	AT3	Ang	7
0837	Inverse Mappings	AT2	Map	7	1132	What's the Probability?	AT4	Pro	5
0838	Scale Factor	AT3	S/En	6					
0839	Rotate this way w/s	АТЗ	Rot	6	1136	Solving Equations	AT2	Equ	7
					1137	Solving Harder Equations	AT2	Equ	8
0843	Very Large Numbers	AT2	P\&R	8					
0844	Very Small Numbers	AT2	P\&R	8	1156	Transformations	AT3	CTr	8
0845	Negative Scale Factor	AT3	S/En	8					
					1170	Compass Constructions	AT3	Dra	6
0849	Anywhere on the Number Line w/s	AT2	Alg	6					
0850	Multiplication Problem?	AT2	Mul	5	1177	Vectors	AT3	TrN	EP
0851	Tile Patterns	AT3	Sha	1/2	1178	More Vectors	AT3	TrN	EP
0852	Colouring Triangles	AT4	Pro	1/2	1179	Column Vectors	AT3	TrN	EP
0853	Grids	AT3	Coo	4					
0854	Perimeter	AT3	A\&P	3					
0855	How Long?	АТ3	Mea	3					
0857	It's Raining	AT4	AIDa	$1 / 2$	1202	Significant Figures	AT2	Or/R	7
0859	Triangle Pairs	AT3	PSh	3	1208	Percentage Sales	AT2	Per	7
0860	The Same Area	AT3	A\&P	4					
0861	Triangle Spirals	AT2	Seq	4	1233	Frequency Graphs	AT4	AlDa	6
0862	Square Spirals	AT2	Seq	3					
0863	Deal the Cards	AT2	Div	3	1257	Volume of Cuboids	AT3	SAN	7
0864	People in Villages	AT4	DDa	3	1258	The Biggest Vase	AT3	SAV	8
					1259	Lengths of Similar Objects	AT3	S/En	8
0866	Sharing Counters	AT2	Div	3					
0867	Dividing Counters	AT2	Div	3	1261	Similar Solids	AT3	S/En	EP
0868	Evens w/s	AT2	PNo	1/2					
0869	Puzzle w/s	AT2	Mix	1/2	1267	Cum. Freq. from Grouped Data	AT4	AlDa	8
0870	Find the Stranger	AT4	L\&S	4					
					1269	Probability	AT4	Pro	7
0872	How Heavy?	AT3	Mea	3					
					1272	Comb Probs from Tree Diagrams	AT4	Pro	EP
0876	Identities	AT2	Alg	7					
0877	Angle 4 Review	AT3	APr	6	1275	Vol and Surface Area of Cylinders	AT3	SAV	7
0881	24 Squares w/s	AT2	Div	3	1278	Multiplying Directed Numbers.	AT2	DNo	7
0882	Lies, Damned Lies \& Statistics	AT4	AlDa	EP	1279	Dividing Directed Numbers	AT2	DNo	7
0884	Positive or Negative?	AT2	DNo	6	1281	Using Gradients	AT2	UGr	EP
0885	Number Noughts \& Crosses	AT2	Add	3					
					1287	Equilateral Construction	AT3	Dra	5
088	Old Oak	AT2	UGr	4	1292	Sampling Shoes	AT4	CDa	5
0894	Force Meet	AT3	TrN	8					
0895	Jumps w/s	AT2	Mul	3	1294	Cooking Numbers	AT2	Rat	5
0896	How Thick?	AT3	Mea	6	1295	Second-hand Cars	AT4	DDa	6
089	Statistics 3 Review	AT4	AlDa	5					
					1299	Tangram Arrows w/s	AT3	Sha	4
0899	Time Bingo	AT3	Mea	$1 / 2$					
0900	24 Hour Bingo	AT3	Mea	3	1300	Measuring Windows	AT2	Dec	5
					1301	Three in a Line	AT4	L\&S	4
0903	Millions	AT2	Mix	6	1302	Logi Puzzle	AT4	L\&S	6
0904	Carry on Subtracting	AT2	Sub	3					
0905	Domino Puzzle	AT4	L\&S	7	1304	An Honourable Problem	AT4	L8S	4
0906	Tak Tiles A (DIME)	AT3	Sha	$1 / 2$	1305	Factorials!	AT2	Mix	EP
0907	Tak Tiles B (DIME)	AT3	Sha	1/2	1306	Decimal Estimation	AT2	Div	5
0908	Tak Tiles C (DIME)	AT3	Sha	1/2	1307	Sections	AT2	PaG	5
090	Tak Tiles D (DIME)	AT3	Sha	3	1308	Problems	AT2	Equ	8
					1309	More Vector Messages w/s	AT3	TrN	5
0982	Letters for Lengths	AT2	Equ	7					
					1312	Matchstick Sequences	AT2	Seq	3
					1313	Match Patterns	AT2	Seq	6
					1315	International Paper Sizes	AT2	Rat	7
100	Cumulative Frequency and O'tiles	AT4	AlDa	8	1316	Halving	AT2	Or/R	5
					1317	Mult \& Div by 10,100 \& $1000 \mathrm{w} / \mathrm{s}$	AT2	Dec	5
101	Dividing in a Given Ratio	AT3	TrN	EP					
					1319	Consecutives	AT2	PNo	7

1432-1799

1432	Triangle Patterns	AT2	Seq	6
1433	Base -2	AT2	PV/N	EP
1434	Bearings and Scale Drawing	AT3	Ang	6
1435	Back Bearings	AT3	Ang	7
1436	Block Problems	AT3	SAN	4
1437	Four Consecutive Numbers	AT2	Alg	EP
1438	Patterns in Pascal's Triangle	AT2	PaG	7
1439	Geometric Progressions	AT2	PaG	EP
1454	ISBN's and Errors	AT2	Div	6
1456	Matrices for Rotations	AT3	Rot	EP
1457	Combining Rotations	AT3	Rot	EP
1458	Reflection Matrices Investigation	AT3	Ref	EP
1459	Matrices for Shears Investigation	AT3	CTr	EP
1460	Diophantine Equations	AT2	Equ	EP
1461	Figures for Words	AT2	PV/N	4
1462	Missing Keys	AT2	Mix	4
1463	Using brackets w/s	AT2	Mix	6
1482	Tricky Sum (MA Poster)	AT2	PaG	6
1484	Decimal Patterns	AT2	Dec	5
1485	Limits	AT2	Seq	EP
1486	Threes and Sevens	AT2	PaG	8
1487	Thinking in Three Dimensions	AT3	Trig	EP
1488	Angles between Planes	AT3	Trig	EP
1500	Subject of a Formula	AT2	Alg	EP
1501	Changing the Subject	AT2	Alg	EP
1504	Areas under Graphs	AT2	UGr	EP
1511	Defining Regions	AT2	Gra	8
1517	Trig Problems	AT3	Trig	EP
1520	Differences Game	AT2	Sub	$1 / 2$
1522	Eight Cubes	AT3	3-D	1/2
1523	A Red Cube	AT3	3-D	4
1524	4 Cube Solids	AT3	3-D	5
1525	Economical Weaving w/s	AT3	Top	4
1528	Fraction Wall 2	AT2	Fra	6
1533	Proportion	AT2	Rat	EP
1537	Sim Equations \& Inequalities	AT2	Gra	8
1538	Solving Simultaneous Equations	AT2	Equ	7
1540	Is There a Solution?	AT2	Equ	7
1541	Cones	AT3	SAN	EP
1543	Composite Functions	AT2	Map	EP
1555	Mystic Rose w/s	AT2	PaG	5
1556	19 Piece Jigsaw	AT2	PV/N	1/2
1557	Spirals w/s	AT3	Dra	3
1559	Areas of Similar Shapes	AT3	S/En	7
1560	Similarity Problems	AT3	S/En	8
1561	Combining Transformations	AT3	CTr	7
1562	Combined Reflections	AT3	Ref	8
1565	Symmetry w/s	AT3	Ref	4
1566	Finding Square Roots	AT2	P\&R	5
1568	Velocity from Dist-Time Graphs	AT2	UGr	EP
1569	Distance, Velocity \& Acceleration	AT2	UGr	EP
1570	Pounds and Pence w/s	AT2	Dec	5
1572	50\% is Half Marks	AT2	Per	5
1589	Square Roots Investigation	AT2	P\&R	7
1591	Domino Sums	AT2	Add	5
1592	Two Cuts Investigation w/s	AT3	PSh	4

1604	Nim (MATH PUZ)	AT2	PV/N	8	1700	Fitting	AT3	Sha	3
1605	Guess (SENSE/NO)	AT2	Or/R	1/2	1701	Posthalf (poster)	O.R.		
1606	Guess D (SENSE/NO)	AT2	Or / R	5	1702	Circle (INVEST)	ReP.		
1607	Elephant (COORD)	АТЗ	Coo	6	1703	Find the Uncle w/s	AT4	L\&S	3
1608	Reverse (MATH PUZ)	AT2	PaG	5	1704	Combined Probability	AT4	Pro	8
1609	Maze (MOVE)	AT3	CTr	1/2					
					1706	Think	AT4	L\&S	7
1613	Calculating Kitty	AT2	Seq	5	1707	Graph Matching	AT2	Gra	8
1614	Probability Kitty	AT4	Pro	7	1708	Factor (PROP/NO)	AT2	PNo	6
1615	Logical Kitty	AT4	L\&S	5	1709	Ratio Problems	AT2	Rat	6
					1710	Pencils	AT2	Rat	4
1618	Number Names	AT2	PNo	6	1711	Missing Digits w/s	AT2	Mix	6
					1712	Four Signs w/s	AT2	Mix	7
1620	Bounce (DfEE)	AT2	PaG	6	1713	Sub-zero	AT2	Sub	4
1621	Rhino (COORD)	AT3	Coo	4	1714	Queens (MOVE Pg 33)	AT3	TrN	6
1622	Vectmeet (MOVE)	АТз	TrN	8	1715	Locate (COORD)	AT3	Coo	6
1624	Snooker(ANGLE)	АТз	Ang	5	1716	Unibond Mixtures	AT2	Rat	7
1625	Box (SENSE/NO)	AT2	PV/N	1/2	1717	Add-a-Square w/s	AT3	Ref	5
1626	Boat (MATH PUZ)	AT4	L\&S	5	1718	Line Symmetry A 1-4 (DIME)	AT3	Ref	5
1627	Self Portrait w/s	AT4	L\&S	4	1719	Line Symmetry A 5-10 (DIME)	AT3	Ref	6
1628	Eight Squares	AT3	A\&P	3	1720	Centicube Surprise	AT3	SAN	5
1629	Pentagons w/s	AT3	Dra	4	1721	Angle 900 ${ }^{\circ}$ (ANGLE)	AT3	Ang	4
1630	Along the Line	AT2	Mix	4	1722	How Many Cubes?	AT3	SAV	1/2
1631	Target 100	AT2	Dec	6	1723	Getting Closer	AT2	Div	6
1632	Marked Buttons	AT2	Add	4	1724	Digit Division	AT2	Dec	6
					1725	Closest Product	AT2	Mul	6
1634	Colouring the Dots	AT3	Top	4	1726	Dividing Pairs	AT2	Div	6
1635	The Key to Success w/s	AT2	Mix	3	1727	Point Circles	AT2	PNo	5
1636	Calculator Flags w/s	AT2	Mix	3	1728	BoxD (SENSE/NO)	AT2	Dec	5
1637	Squares and Other Powers	AT2	P\&R	EP	1729	Minimax(SENSENO \& DfEE)	AT2	PV/N	5
1638	Tri-umph	AT2	Div	6	1730	Wall (SENSE/NO)	AT2	Fra	4
1639	Quarto	AT2	Dec	7	1731	Rose (INVEST)	AT2	PaG	6
					1732	3-D Maze (MOVE)	AT3	3-D	
1641	Lines (COORD)	AT3	Coo	5	1733	An Even Code w/s	AT2	Map	3
					1734	An Islamic Design w/s	AT4	L\&S	7
1643	Lucky Dip	AT4	Pro	4	1735	Centimetres	AT3	Mea	$1 / 2$
					1736	Algebra Pairs	AT2	Alg	8
1646	Probability Kitty	AT4	Pro	8	1737	Route Six	AT2	Fra	6
1647	Weaving w/s	AT3	Sha	7	1738	Calcumaze	AT2	Mul	6
1648	Number Clues	AT2	PNo	3					
1649	Walking to School	AT2	Rat	4	1740	About How Much?	AT3	Mea	4
1650	Take Part (DfEE)	ReP			1741	Make Half	AT3	A\&P	5
1651	Frogs (MATH PUZ)	AT2	PaG	5	1742	The Garme of 20	AT2	Mul	6
1652	Jugs (MATH PUZ)	AT2	Seq	7	1743	Decimal Products	AT2	Dec	5
1653	Master (MATH PUZ)	AT4	L\&S	7	1744	Yes/No	AT3	PSh	6
1654	Race Game (MOVE)	AT3	TrN	7	1745	Identify (PROP/NO)	AT2	PNo	5
1655	The Factor Game	AT2	PNo	5	1746	Define (PROP/NO)	AT2	PNo	6
1656	The Lost Divide	AT2	Div	6	1747	Darts (NUM)	AT2	Sub	4
1657	The Great Divide	AT2	Div	7					
1658	The Smith Family Circus	AT2	PNo	7	1749	Decimal Jigsaw	AT2	Dec	5
1659	Mind Reversal	AT2	PaG	5	1750	Layers	AT3	SAN	4
1660	The Champion Flea	AT2	Rat	7	1751	Decimal Lists	AT2	Dec	4
					1752	Under a Magnifying Glass	AT2	Rat	5
1662	Get to One	AT2	Mix	5	1753	Matching Pairs w/s	AT3	Mea	4
1663	Largest and Smallest	AT2	PV/N	3	1754	Chinese Number Puzzle (box)	AT2	PV/N	6
					1755	Hopslide (MATH PUZ)	AT4	L\&S	4
1665	$(x+1)^{2}$	AT2	Alg	7	1756	Tadpoles (MATH PUZ)	AT2	PaG	4
1666	Tower (SENSE/NO)	AT2	Fra	6	1757	Airline Networks	AT3	Top	5
1667	Pilot (MOVE)	AT3	Ang	6	1758	Co-ordinate Messages w/s	AT3	Coo	3
1668	Mapping Puzzle	AT2	Map	4	1759	Shapes That Can Grow w/s	AT3	S/En	6
1669	Sim w/s	AT3	PSh	1/2	1760	One Straight Cut w/s	AT3	Sha	6
1670	Find the Fakes	AT4	Pro	8	1761	Gelosia Problems w/s	AT2	Mul	6
1671	Multiplication Jigsaw (box)	AT2	Mul	1/2	1762	From A to B	AT3	Trig	7
1672	Soma Solids	AT3	3-D	6	1763	Circles Triangles and Hexagons	AT3	CiM	EP
1673	HCF and LCM	AT2	PNo	7	1764	Tangled Quadrilaterals	AT3	PSh	6
					1765	Two by Two	AT3	3-D	3
1675	Board Order	AT3	CTr	4	1766	Flying Engineers	AT4	L\&S	7
1676	Pythagorean Triples	AT2	Equ	EP	1767	Addsupto (NUM)	AT2	Add	5
1677	Proof by Contradiction	AT2	PNo	EP	1768	Zig Zags w/s	AT3	Mea	3
1679	Spheres	AT3	3-D	EP	1770	The Lewis Family	AT4	L\&S	6
1680	Reflect-a-Bug	AT3	Ref	1/2	1771	Early Egyptian Fractions	AT2	Fra	7
1681	Folding	AT3	PSh	EP	1772	Four Triangles	AT3	PSh	6
1682	Number Jumble	AT2	Alg	8	1773	Two Triangles	AT3	PSh	6
1683	A Square Puzzle (box)	AT2	Div	3	1774	Modelling with Graphs	AT2	UGr	8
1684	A Problem of Power	AT2	P\&R	8	1775	Parners	AT2	Alg	EP
1685	Milk Crate	AT4	L8S	6	1776	Spirals (INVEST)	ReP.		
1686	Square	AT3	A\&P	7	1777	Avoid Each Other (MOVE Pg 30)	AT3	TrN	7
1687	Change	AT2	Add	3	1778	Jumping (MATH PUZ)	AT2	PaG	6
1688	Square Jigsaw (box)	AT3	CTr	8	1779	Lineover (GRAPH)	AT2	Gra	EP
1689	Fraction Flags	AT2	Fra	5					
1690	Logical Kitty	AT4	Pro	4	1782	To be Continued	AT2	Mul	5
1691	Predict (PROP/NO)	AT2	PaG	7	1783	Calculating Booklet	O.R.		
					1784	Big Wheel	AT3	Trig	EP
1696	Car Trial Results	AT2	Rat	6	1785	Invest. Queens (MOVE Pg 32)	AT2	PaG	7
1697	Motor Cycle Ratios	AT2	UGr	8	1786	Which Number?	AT2	PV/N	5
1698	Identikit	AT3	PSh	5	1787	Angle 360 ${ }^{\text {(}}$ (${ }^{\text {a }}$ (${ }^{\text {a }}$	AT3	Ang	5
1699	Fifteen Game	AT2	Add	3	1788	Blocked (poster)	AT4	L\&S	8
					1790	The Chinese Triangle	AT2	PaG	7
					1791	Getting Into Shape (box)	AT3	PSh	4
					1792	Feeling Hungry?	AT4	DDa	5
					1793	Cuneiform Numbers	AT2	PV/N	EP
					1794	Building Cubes	AT3	3-D	6
					1795	Identical Halves w/s	AT3	PSh	EP
					1796	Plotter (GRAPH)	ReP.		
					1798	Quilts (INVEST)	AT2	Pag	6
					1799	Boxes w/s	AT2	DNo	4

1800	Gelosia for Decimals	AT2	Dec	7
1812	Find Four Squares w/s	AT3	PSh	3
1813	Crossword w/s	AT2	Mix	3
1818	Helicopter Photographs	AT2	UGr	7
1820	Parallels (GRAPH)	AT2	Gra	7
1821	Overtaking	AT2	UGr	7
1822	Product of Primes	AT2	Mul	7
1824	Silver Earrings w/s	AT3	A\&P	4
1825	Exactly Ten	AT2	Add	4
1826	$y=m x$ (GPAPH)	AT2	Gra	6
1828	Find the Shape w/s	AT3	PSh	3
1830	The 'Smoothing Out' Principle	AT2	UGr	8
1832	Minimum Information	AT3	Dra	EP
1833	Magic (NUM)	AT2	Mix	6
1834	Tenners (NUM)	AT2	Dec	5
1835	Magnify (SENSE/NO)	AT2	PV/N	5
1836	3 in a Line (COORD)	AT3	Coo	6
1839	Which Card is Missing?	AT4	L\&S	1/2
1840	Point And Lines (GRAPH)	AT2	Gra	EP
1841	Interlocking Squares (DIME)	AT3	PSh	1/2
1842	Shapes Jigsaw (DIME)	AT3	PSh	1/2
1843	Polygons and Right Angles	AT3	PSh	8
1844	Straight Lines w/s	AT3	Dra	4
1845	Shading Strips	AT4	Pro	4
1847	Symmetrical Triangles w/s	AT3	Ref	4
1848	Three by Three	AT4	L\&S	4
1849	100 Search w/s	AT2	Add	3
1851	Regions (GRAPH)	ReP.		
1852	Foxes \& Chickens (GRAPH)	AT2	UGr	EP
1853	Pinball (INVEST)	ReP.		
1855	Quadratic Mappings (DIME)	AT2	Map	7
1856	What Shapes? w/s	AT3	PSh	1/2
1857	The Other Side	AT3	3-D	8
1858	Bengali ১৯ Piece Puzzle (box)	AT2	PV/N	5
1861	Dipsticks	AT3	SAN	7
1862	Even Animal w/s	AT2	PNo	1/2
1866	Mirror Match (DIME)	AT3	Ref	5
1867	Four Cubes	AT3	3-D	1/2
1868	Symmetry Match w/s	AT3	Ref	1/2
1872	Back to Back	AT3	3-D	4
1873	Polygon Symmetries	AT3	PSh	7
1874	Sevens Out	AT2	PV/N	3
1875	Urdu Multiples	AT2	PV/N	6
1876	Fill the Shape (DIME)	AT3	3-D	3
1877	Add a Cube or Two (DIME)	AT3	3-D	5
1878	Two Blocks (DIME)	AT3	3-D	4
1879	Build and Balance (DIME)	AT3.	3-D	7
1880	More than Two Blocks (DIME)	AT3	3-D	6
1881	Hindi Additions	AT2	PV/N	7
1882	Wedges 1 (DIME)	AT3	3-D	6
1883	Wedges 2 (DIME)	AT3	3-D	8
1885	Optimising	AT3	SAN	EP
1886	World View	AT3	A\&P	6
1889	Regular Tilings 1 (DIME)	AT3	Sha	5
1890	Reguiar Tilings 2 (DIME)	AT3	Sha	6
1891	Regular Tilings 3 (DIME)	AT3	Sha	6
1892	Line Symmetry B 1-3 (DIME)	AT3	Ref	5
1893	Line Symmetry B 4-6 (DIME)	AT3	Ref	7
1894	Line Symmetry B 7-10 (DIME)	AT3	Ref	7
1896	Spatial Reasoning (DIME)	AT3	Sha	4
1897	Who is the Schoolkeeper?	AT4	L\&S	5
1898	Who has the Microcomputer?	AT4	L\&S	7
1899	Number Words	AT2	PaG	3

2100	Putting it to the test	AT4	Pro	7	2200	Pie Charts for Breaktas	AT4	DDa	5
2101	Logiblock Sets	AT4	L\&S	7	2201	Vectors and Squares	AT3	TiN	7
					2202	Visiting Every Point (INVEST Pg 8)	AT2	PNo	5
2103	Circle Packing	AT3	Cim	8	2203	Algebra Match w/s	AT2	Alg	7
2105	Equal Fraction Pairs	AT2	Fra	3	2205	Making 25p	AT2	Add	1/2
2106	Party Solutions	AT2	UGr,	EP	2206	Exploring Sine Curves	AT3	Trig	EP
2107	Oxfam Collection w/s	AT2	Add	4	2207	Pinball Experiments	AT4	Pro	7
					2208	Best Marks	AT4	AIDa	7
2109	Another Trig Line	АТЗ	Trig	8	2209	Short Orders	AT2	Alg	5
2110	Number Sort w/s	AT2	PV/N	1/2	2210	Handspan	AT4	AIDa	3
2111	Rotational Symmetry Jigsaws	AT3	Rot	4	2211	Equivalent Expressions w/s	AT2	Alg	7
2112	Imaginings (Teacher)	O.R.			2212	10 Search w/s	AT2	Add	1/2
2113	Mystery (Calculating Pg 3)	AT2	Mix	3	2213	Sum Message w/s	AT2	Mix	1/2
2114	2 Puzzles (Calculating Pg 5)	AT2	Mix	4	2214	Shape Sequences	AT	CTr	7
2115	Missing Digit (Calculating Pg 8)	AT2	Mix	6	2215	Identicubes	AT	Alg	8
2116	Operations (Calculating Pg 9)	AT2	Mix	4	2216	From Matches to Mappings w/s	AT	Map	5
2117	Rumour (Calculating Pg 10)	AT4	CDa	6	2217	Magic Circles	AT	Add	5
2118	Ticket Sales (Calculating Pg 11)	AT2	Mix	4	2218	Origami Dodecahedron	AT3	3-D	7
2119	Patterns (Calculating Pg 12/13)	AT2	Seq	5	2219	Origami Cube	AT3	3-D	5
2120	Productive (Calculating Pg 14)	AT2	Mul	5	2220	Trig for any Triangle	AT3	Trig	EP
2121	Hot and Cold (Calculating Pg 15)	AT4	AlDa	4	2221	Jigsaws	AT2	PaG	5
2122	Target 200 (Calculating Pg 16)	AT2	Mix	5	2222	Equal Area? w/s	AT3	A\&P	6
2123	Missing Signs (Calculating Pg 17)	AT2	Mix	6	2223	Fractions to Decimals Match w/s	AT2	Dec	6
2124	Date of Birth (Calculating Pg 18/19)	AT2	Mix	5	2224	Shajad's Collection	AT2	Mix	3
2125	Escape (Calculating Pg 20/21)	AT2	PaG	5	2225	Wildlife Collection	AT2	Mix	3
2126	Problems (Calculating Pg 22/23)	AT2	Or/R	6	2226	Sum Number Cards	O.R.		
2127	Tricube Codes	АТЗ	3-D	6	2227	5 p a line	AT2	Add	12
2128	Stacking	AT2	PaG	4	2228	Vector Match	AT3	TiN	6
2129	Tens and fives w/s	AT2	Mul	3	2229	Quadratics and Primes	AT2	PNo	8
2130	A Disappearing Act	AT2	Mix	EP	2230	Which has the Largest Area? w/s	AT3	A\&P	1/2
2131	Filing Cards w/s	AT2	PV/N	3	2231	Hexiamonds	AT3	PSh	5
2132	Cutting Corners	AT3	3-D	7	2232	Cut a Cube	AT3	3-D	7
2133	Out of $100 \mathrm{w} / \mathrm{s}$	AT2	Per	3	2233	Cafe Menu	AT2	Mix	1/2
2134	Similar Rectangles?	AT2	Rat	6	2234	Defining Regions	AT2	Gra	8
2135	Grey Areas	AT3	CiM	EP	2235	Headlines	AT4	DDa	6
2136	What could x be?	AT2	Equ	7	2236	25\% of What?	AT2	Per	5
2137	Using Sine and Cosine 1	AT3	Trig	8	2237	Words Won't Fail Me w/s	AT2	Alg	6
2138	Which Hand Works Hardest?	AT4	CDa	6	2238	What is the perimeter?	AT3	A\&P	1/2
2139	Tricube Symmetries	AT3	Ref	6	2239	Putting in Order w/s	AT2	PV/N	3
2140	Quadratic Solutions	AT2	Gra	EP	2240	Ask Me Another w/s	AT3	PSh	6
2141	Constructive Designs	AT3	Dra	7	2241	Cuts to Pieces	AT2	PaG	5
2142	Making Circles	AT3	CiM	5	2242	Decimal Flags w/s	AT2	Dec	6
2143	Percentages of Money w/s	AT2	Per	4	2243	Who's Rule, Okay?	AT2	Alg	7
2144	Using Sine and Cosine 2	AT3	Trig	8	2244	Packing Balls	AT3	SAN	EP
2145	Cross Stitch	AT3	CTr	7	2245	Rows and Columns	AT2	Add	4
2146	It's not Fair!	AT3	Сім	4	2246	Sieve of Eratosthenes	AT2	PNo	5
2147	Odd Animal w/s	AT2	PNo	1/2	2247	More Than, Less Than	AT2	Equ	6
2148	Transforming Triangles	AT3	CTr	8	2248	Snails' Trails	AT3	Mea	12
2149	Circle Coverage	AT3	Сім	6	2249	Gradients and Intercepts	AT2	Gra	8
2150	Pizza Paradise	AT3	CiM	7	2250	A Puzzling Walk (poster)	AT4	L\&S	6
2151	The Root of the Problem	AT2	P\&R	6	2251	Put them in their Place w/s	AT2	Mix	7
2152	How Likely?	AT4	Pro	4	2252	Something and a Half w/s	AT2	Fra	12
2153	£1 Search w/s	AT2	Add	1/2	2253	Solving Inequalities	AT2	Equ	7
154	Sum Dice	AT2	Mix	6	2254	Calculator Brackets	AT2	Mix	6
2155	Visualising	АТЗ	PSh	5	2255	Adding One	AT2	Fra	6
2156	Fraction Squares	AT2	Fra	6	2256	Matching Fractions w/s	AT2	Fra	3
2157	Some Sums for your Mind w/s	AT2	Mix	7	2257	Right Angled Triangular Prisms	AT3	SAV	5
2158	Turning Green w/s	AT4	L\&S	1/2	2258	Substituting into Formulae	AT2	Equ	8
2159	Permutating Tricubes	AT4	Pro	8	2259	Multiplication Flags w/s	AT2	Alg	4
2160	Folding Fractions	AT2	Fra	5					
2161	Shape Names w/s	АТ3	PSh	5	2261	Shape-Tiles w/s	АТЗ	TrN	12
2162	Angles and Triangles	AT3	APr	6	2262	Find the Route w/s	AT2	Mix	3
2163	Geometry Facts	O.R.			2263	Spreadsheet Squares	AT2	Mul	6
2164	Information Displayed	AT4	DDa	5	2264	Plus and Minus Grids w/s	AT2	Mix	3
					2265	Rational Numbers	AT2	PNo	8
2166	Matching Equations	AT2	Gra	8	2266	Irrational Numbers	AT2	PNo	EP
2167	Range of Area	АТЗ	Or/R	8	2267	Introducing Ratio	AT2	Rat	5
2168	Cube Root Calculator	AT2	P\&R	6	2268	Logo is Amazing	AT3	Ang	4
69	Pop of Britain 1880 and 1980	AT4	DDa	7	2269	Amazing Logo	AT3	Ang	5
2170	Shape Up	AT3	PSh	6	2270	Measuring Pencils	AT3	Mea	4
2171	Pie Chart Match w/s	AT4	DDa	5	2271	I've got the Power	AT2	P\&R	8
2172	Two Down	AT2	Or/R	4	2272	Lines, Regions and Inequalities	AT2	Gra	7
2173	Unmarked Angles w/s	AT3	APr	6	2273	Looping Chains	AT2	Seq	5
2174	The Mode w/s	AT4	AlDa	4	2274	abc w/s	AT2	Alg	5
2175	Grouping Data	AT4	AIDa	7	2275	Algebra Problems	AT2	Equ	8
2176	Talking (poster)	O.R.			2276	Curvy Tiles in LOGO	AT3	Dra	6
2177	Population Projections	AT4	AIDa	5	2277	Brackets	AT2	Alg	7
2178	Volumes	AT3	SAN	5	2278	Mapping Jigsaw w/s	AT2	Map	3
2179	Shakes and Adders	AT2	DNo	5	2279	Island Game	AT3	TrN	1/2
					2280	Equal Angles	AT3	Ang	
2181	Big Hand ... Big Foot?	AT4	CDa	5	2281	Simultaneous Match	AT2	Gra	7
2182	Shongo Networks	AT2	PaG	7					
2183	Using Standard Form	AT2	P\&R	8	2283	Jumping	AT3	Mea	3
2184	Powers of Integers	AT2	P\&R	8	2284	BoxN (SENSENO)	AT2	Or/R	4
					2285	Guess ((SENSE/NO)	AT2	Or/R	5
2186	Missing Pieces w/s	AT2	Mul	1/2	2286	Quadrants and Squares (DIME)	AT2	Alg	4
2187	Pythagoras Plus	AT3	Trig		2287	Add \& Sub Squs \& Quads (DIME)	AT2	Alg	6
2188	Population Pyramids	AT4	DDa	7	2288	Algebra Tak-Tiles on a Grid (DIME)		Alg	6
2189	Strange Dice Game	AT4	Pro	4	2289	Alg Tak-Tiles without a Grid (DIME)		Alg	7
2190	Twice as Many	AT2	Rat	3	2290	A New Unit of Area (DIME)	AT2	Alg	7
2191	Calculator Graphs	AT2	Gra	7	2291	Comparing Areas (DIME)	AT2	Alg	7
2192	Solving Quadratic Equations	AT2	Equ	EP	2292	Towers (box)	O.R.		
2193	Number Square Words w/s	AT2	PV/N	3	2293	Negative Sequences	AT2	Seq	5
2194	Tossing Coins (INVEST Pg 38-40)	AT4	Pro	7	2294	Sum, product \& difference	AT2	Mix	4
2195	The Higher the Better	AT2	PV/N	1/2	2295	Histograms	AT4	DDa	8
					2296	Mapping Rectangles w/s	AT2	Map	3
2197	Blue in the Face	AT3	3 -D	7	2297	Harder Negative Sequences	AT2	DNo	7

2300	Fraction Bingo	AT2	Fra
2301	Sim Equations from Graphs	AT2	Gra
2302	Bearings	AT3	Ang
2303	Hundred Fit (box)	AT2	Seq
2304	Favourite Ice Cream	AT4	AlDa
2305	Hexagon Puzzle w/s	AT2	PV/N
2306	Patterns on a Line w/s	AT3	CTr
2307	Triangle Sums Game	AT2	Add
2308	Word Match w/s	AT3	PSh
2309	Rangoli Patterns	AT3	Ret
2310	Sequences Jigsaw w/s	AT2	Seq
2311	Start with 60°	AT3	Dra
2312	Number Challenge	AT2	PNo
2313	Turning the Cards	AT4	Pro
2314	Describing Sequences	AT2	Seq
2315	With a ruler	АТ3	Mea
2318	A Mean Challenge!	AT4	AlDa
2319	Pizza or Pasta?	AT4	Pro
2320	Patterns in Spirals	AT2	Seq
2321	The Algebra Game	AT2	Alg
2322	The Algebra Game 2	AT2	Alg
2323	Statistical Invs Helpbook	O.R.	
2324	Reckonings (Teacher)	O.R.	
2325	Grouped Data, Reviewed	AT4	AIDa
2326	Hanoi (MATH PUZ)	AT2	Pag
2327	Hats (MATH PUZ)	AT4	L8S
2328	Quadratic Rules	AT2	Alg
2329	The Median	AT4	AIDa
2330	Missing Angles w/s	AT3	APr
2332	Decimals on a Number Line w/s	AT2	Dec
2333	Quiz Times w/s	AT2	Mul
2334	Beat the code	AT2	Alg
2335	Using Decimals	AT2	Dec
2336	Comparing Ratios	AT2	Rat
2338	Decimal Search w/s	AT2	Dec
2339	$2 \times$ Table w/s	AT2	Mul
2340	$3 \times$ Table w/s	AT2	Mul
2341	$4 \times$ Table w / s	AT2	Mul
2342	$5 \times$ Table w/s	AT2	Mul
2343	$6 \times$ Table w/s	AT2	Mul
2344	$7 \times$ Table w/s	AT2	Mul
2345	$8 \times$ Table w/s	AT2	Mul
2346	$9 \times$ Table w/s	AT2	Mul
2347	$10 \times$ Table w/s	AT2	Mul
2348	$11 \times$ Table w/s	AT2	Mul
2349	$12 \times$ Table w/s	AT2	Mul
2350	End of level Review	AT2/3/4	
2351	End of level Review	AT2/3/4	
2352	End of level Review	AT2/3/4	
2353	End of level Review	AT2/3/4	
2354	End of level Review	AT2/3/4	
2355	End of level Review	AT2/3/4	
2356	End of level Review	AT2/3/4	4
2357	Matching Algebraic Exps w/s	AT2	Alg
2358	Angle Fit w/s	AT3	APr
2359	Approximate Solutions	AT2	Or / R
2360	Rotational \& Line Symmetry Review	AT3	CTr
2361	Right-angle or not?	AT3	Ang
2362	Decimal Routes w/s	AT2	Dec
2363	Conversion Pack 1	АТЗ	Rat
2364	Decimal Playing Cards	O.R.	
2365	Higher Decimal Win	AT2	Or/R
2366	Decimal Difference	AT2	Dec
2367	Sixteen Quadrilaterals	AT3	PSh
2368	Matching Decimals	AT2	Or/R
2369	Decimal Sort	AT2	Dec
2370	Conversion Pack 2	AT3	Rat
2371	Rounding to 10	AT2	Or/R
2372	Powers of Ten Flags w/s	AT2	Dec
2373	Queens (MOVE)	ReP.	
2374	Equivalent Fractions Pairs	AT2	Fra
2375	Polygons in Circles	AT3	Dra
2376	Maths in Your Head	O.R.	
2377	TenSprint(NUM)	AT2	Add 1/2
2378	Matching Fractions(NUM)	AT2	Fra
2379	Ordering Fractions (NUM)	AT2	Fra
2380	Number Lines (NUM)	AT2	Rat
2381	Number LinesD (NUM)	AT2	Rat
2382	Areas of Polygons w/s	AT3	A\&P
2383	Solid Expressions	AT3	SAN
2384	Angles in a Regular Hexagon w/s	AT3	APr
2385	Nine Nine Nine	AT2	PaG
2386	Multiplication Review	AT2	Mul
2387	Multiples of Ten w/s	AT2	Add
2388	Six Pyramids	AT3	Trig
2389	Percentages Puzzles w/s	AT2	Per
2390	Consecutive Products	AT2	Mul
2391	Matching Weights w/s	АТЗ	Mea
2392	Sensible Answers	AT2	Or/R
2393	Equivalent Pairs (ENRICH)	AT2	Per
2394	Make that Number (ENRICH)	AT2	Per
2395	Maximum Remainder (ENRICH)	AT2	Div
2396	Find The Line (GRAPH)	AT2	Gra
2397	Guess Inequality (GRAPH)	AT2	Gra
2398	Decimal Places Match w/s	AT2	Or/R
2399	Number Stories	AT2	Mix

2400-2403

2400	Circle Cut w/s	AT3	CiM	8
2401	Play Your Cards Right	AT2	PNo	3
2402	Equivalent Fractions Sort w/s	AT2	Fra	5
2403	Missing the Point	AT2	Dec	5.

Network 1 - 5
April 2001 0001-2403

The grids below are designed to aid the recording of student assessment over a period of time.
Inital Teacher Assessment

Key Stage 3 Assessment

Key Stage 4 Assessment

ntal, Written and Calculator Methods		Equations, Formulae and Idenitities			Sequences, Functions and Graphs			
Autipilication Division	Mixed	Alaterale	Equalons	Sequences	${ }_{\text {Pater }}^{\substack{\text { Patern } \\ \text { Generasation }}}$	Mapping	Graph	Using Gr
	${ }_{\text {den }}$				${ }_{\text {coill }}$			
(xitbew	${ }_{1381}$							
\%	${ }_{2}{ }_{\text {mimamoms }}$							
	${ }_{\text {cosem }}$							
res	${ }^{\text {Oficgem }}$ (2)							

(1ay			50930	${ }_{60318}$	\%itia	\%oit	
				sin		Cotame	
\%atame				${ }^{19} 955$			
cixe				\%		隹	
(mass	239					\%	
				smom			
\%atum	\%tics			8isiz		2296	
	Cumb						
7355	${ }^{\text {andma }}$						
	\%mo						
,	0074						
ofteverevevew: Number and A Aseotara 2350(2)							
	${ }^{\text {incom }}$			\%ixic			${ }^{\text {Oi8as }}$
				\%939	${ }^{2}$	\%isw	
\%om			509\%		\%		
	\%			¢5\%me			
beis	(enmo			${ }^{\text {chem }}$	${ }^{2395}$		
\%ize	\%ay						
				Comem			
	$\stackrel{y}{2}$						
ofleverevever: Number and Alseorara $2351(2)$							
		$\xrightarrow{2007}$		520in		${ }^{\text {migisi }}$	\% 1
, ${ }^{\text {nitu }}$			\%	2\%mis			¢
	$0^{\text {O779 }}$	${ }^{21274}$	foict	\%470			
	2012				\%ise7	边	
(1) cave	\%				\% 1 \%55	${ }^{2059}$	
13000^{1306}	0092					2216	
\%	${ }^{\text {cisbom }}$					5ition	
\%mimis							
	03835						
	\checkmark						

phs	Geometrical Reasoning					Transformations					Coordin ates Co-ordinates	Construction \&LociDrawing	
	3.0	Shape	Properties of Shape	Angle Properties	Topology	Similarityl Enlargement	Rotation	Reflection	Translation/ Vectors	Combined Transformations			
					$\begin{gathered} \text { curod } \\ \text { suted } \\ \text { Lites } \\ 2089 \end{gathered}$				$\begin{aligned} & \text { Boneren } \\ & \text { Onters } \end{aligned}$	$\begin{gathered} \text { Panems } \\ \text { onemme w/s } \\ 2306 \end{gathered}$			
	$\begin{aligned} & \substack{\text { Losiong } \\ \text { wiond } \\ 06617} \end{aligned}$		Word Match w/s 2308					${ }_{\text {cosem }}$	$\begin{aligned} & \text { Band } \\ & \text { Band } \\ & \text { d2 } \end{aligned}$	$\begin{aligned} & \text { Maxe } \\ & \substack{\text { maio } \\ 1609} \end{aligned}$			
													${ }_{17}$
			$\begin{gathered} \substack{\text { shages } \\ \text { andes } \\ \text { anc } \\ \hline 842} \end{gathered}$										
		${ }_{\substack{\text { a }}}^{\text {Patams }}$											
			${ }_{\substack{\text { smums } \\ 1669}}$										

	${ }^{\text {Dissection }}$ O 1	(Tinange	$\begin{gathered} \text { Tuning } \\ \text { Sunt } \\ 0330 \end{gathered}$			${ }_{\text {Enempos }}^{\text {On71 }}$
${ }_{\text {Solisemm }}$		${ }_{\text {che }}^{\text {Piagnas }}$	Rosalans			$\begin{aligned} & \text { Midpoint } \\ & \text { Sequences w/s } \\ & 0456 \end{aligned}$
$\substack{\text { Solides } \\ \text { Sndes } \\ 132}$	${ }_{1}^{\text {fmag }}$	$\begin{aligned} & \text { cind for } \\ & \text { Sinates } \\ & 1812 \end{aligned}$				
		${ }_{2}{ }^{\text {Four Sides }}$	$\begin{gathered} \text { Compass } \\ \substack{\text { compas } \\ 1949} \end{gathered}$			

End of level review: Shape, Space and Measurements 2350

Using and applying mathematics

The assessment criteria below are to be used to assess Using and applying mathematics in the context of Number and algebra and Shape, space and measures.
Separate assessment criteria must be used for assessing Handling data at Key Stage 4.

Level	Making and monitoring decisions to solve problems	Communicating mathematically	Developing skills of mathematical reasoning
	Candidates use mathematics as an integral part of classroom activities.	Candidates represent their work with object or pictures and discuss their work.	Candidates recognise and use a simple pattern or relation ship, usually based on their experience.
7	Candidates select the mathematics for some classroom activities.	Candidates discuss their work using familiar mathematical language and are beginning to represent it using symbols and simple diagrams.	Candidates ask and respond appropriately to questions including 'What would happen if .?"
	Candidates try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise work and check results.	Candidates discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams.	Candidates show that they understand a general statement by finding particular examples that match it.
	Candidates are developing their own strategies for solving problems and are using these strategies both in working within mathematics and in applying mathematics to practical contexts.	Candidates present information and results in a clear and organised way, explaining reasons for their presentation.	Candidates search for a pattern by trying out ideas of their own.
	In order to carry through tasks and solve mathematical problems, candidates identify and obtain necessary information; they check their results, considering whether these are sensible	Candidates show understanding of situations by describing them mathematically using symbols, words and diagrams.	Candidates make general statements of their own based on evidence they have produced and give an explanation of their reasoning.
	Candidates carry through substantial tasks and solve quite complex problems by breaking then down into smaller, more manageable tasks.	Candidates interpret, discuss and synthesise information presented in a variety of mathematical forms. Their writing explains and informs their use of diagrams.	Candidates are beginning to give a mathematical justification for their generalisations; they test them by checking particular cases.
	Starting from problems or contexts that have been presented to them, candidates introduce questions of their own, which generate fuller solutions.	Candidates examine critically and justify their choice of mathematical presentation, considering alternative approaches and explaining improvements they have made.	Candidates justify their generalisations of solutions, showing some insight into the mathematical structure of the situations being investigated. They appreciate the difference between mathematical explanation and experimental evidence.
8	Candidates develop and follow alternative approaches. They reflect on their own lines of enquiry when exploring mathematical tasks; in doing so they introduce and use a range of mathematical techniques.	Candidates convey mathematical meaning through consistent use of symbols.	Candidates examine generalisations or solutions reached in an activity, commenting constructively on the reasoning and logic employed, and make further progress in the activity as a result.
	Candidates analyse alternative approaches to problems involving a number of features or variables. They give detailed reasons for following or rejecting particular lines of enquiry.	Candidates use mathematical language and symbols accurately in presenting a convincing reasoned argument.	Candidates' report includes mathematical justifications, explaining their solutions to problems involving a number of features or variables.
	Candidates consider and evaluate a number of approaches to a substantial task. They explore extensively a context or area of mathematics with which they are unfamiliar. They apply independently a range of appropriate mathematical techniques.	Candidates use mathematical language and symbols accurately in presenting a concise reasoned argument.	Candidates provide a mathematically rigorous justification or proof of their solution to a complex problem, considering the conditions under which it remains valid.

The SMILE 2001 Network

The 2001 SMILE Network reflects the Mathematics National Curriculum 2000 and the KS3 Framework for Teaching Mathematics 2001. The Network is intended to assist teachers in planning and recording a scheme of work for each student according to their mathematical needs.

The Network can be used as a formative record of the student's progress throughout Key Stages 3 and 4 and as an aid to summative teacher assessment at the end of Key Stage 3 because the SMILE activities are arranged to reflect the sections of the Programme of Study.

A student's Network provides evidence of the extent to which the Programme of Study has been covered. The final decision about which Level Description best fits the student should be made in the light of work satisfactorily completed and understood and the teacher's knowledge of the student's mathematical ability.

The Inside of the SMILE Network - The programmes of study for mathematics

The SMILE Network contains a variety of different codes which are intended to provide help for teachers when setting work for a student. These are explained below.

World View Activities which require thought and planning before being set for students

Algebra A SMILE activity which is a worksheet - found in the SMILE Worksheet Pack.
Match w/s

A SMILE activity which is not usually stored with the workcards or worksheets.

A SMILE activity. The number inside a bracket indicates a longer activity. The number gives a guide to the approximate expected length of the activity.

Up the A SMILE activity. Either investigative or practical where the work can only be

Activities from other publishers and SMILE software are identified by the source written in upper case letters in brackets. Full details of all these are found on the SMILE Commercial References Sheet, available from SMILE Mathematics.

The Outside of the SMILE Network

Assessment Grids To aid the recording of:

- NFER results
- termly assessment and attainment grades
- individual action targets
- SEN and IEP's

Using and applying mathematics criteria reflect the three stands for Key Stage 4.
Other Resources SMILE resources which are:

- Teacher Resources
- Support materials for students
- Additional resources

Name

MATHEMATICS

Network 4-7

April 2001 0001-2403
The grids below are designed to aid the recording of student assessment over a period of time.

Inital Teacher Assessment

Key Stage 3 Assessment

Key Stage 4 Assessment

;ulations
Algebra
of level review: Number and Algebra 2351 (2)

Using and applying mathematics

The assessment criteria below are to be used to assess Using and applying mathematics in the context of Number and algebra and Shape, space and measures.
Separate assessment criteria must be used for assessing Handling data at Key Stage 4.

Level	Making and monitoring decisions to solve problems	Communicating mathematically	Developing skills of mathematical reasoning
	Candidates use mathematics as an integral part of classroom activities.	Candidates represent their work with object or pictures and discuss their work.	Candidates recognise and use a simple pattern or relation ship, usually based on their experience.
	Candidates select the mathematics for some classroom activities.	Candidates discuss their work using familiar mathematical language and are beginning to represent it using symbols and simple diagrams.	Candidates ask and respond appropriately to questions including 'What would happen if .?"
2	Candidates try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise work and check results.	Candidates discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams.	Candidates show that they understand a general statement by finding particular examples that match it.
	Candidates are developing their own strategies for solving problems and are using these strategies both in working within mathematics and in applying mathematics to practical contexts.	Candidates present information and results in a clear and organised way, explaining reasons for their presentation.	Candidates search for a pattern by trying out ideas of their own.
	In order to carry through tasks and solve mathematical problems, candidates identify and obtain necessary information; they check their results, considering whether these are sensible	Candidates show understanding of situations by describing them mathematically using symbols, words and diagrams.	Candidates make general statements of their own based on evidence they have produced and give an explanation of their reasoning.
	Candidates carry through substantial tasks and solve quite complex problems by breaking then down into smaller, more manageable tasks.	Candidates interpret, discuss and synthesise information presented in a variety of mathematical forms. Their writing explains and informs their use of diagrams.	Candidates are beginning to give a mathematical justification for their generalisations; they test them by checking particular cases.
	Starting from problems or contexts that have been presented to them, candidates introduce questions of their own, which generate fuller solutions.	Candidates examine critically and justify their choice of mathematical presentation, considering alternative approaches and explaining improvements they have made.	Candidates justify their generalisations of solutions, showing some insight into the mathematical structure of the situations being investigated. They appreciate the difference between mathematical explanation and experimental evidence.
θ	Candidates develop and follow alternative approaches. They reflect on their own lines of enquiry when exploring mathematical tasks; in doing so they introduce and use a range of mathematical techniques.	Candidates convey mathematical meaning through consistent use of symbols.	Candidates examine generalisations or solutions reached in an activity, commenting constructively on the reasoning and logic employed, and make further progress in the activity as a result.
	Candidates analyse alternative approaches to problems involving a number of features or variables. They give detailed reasons for following or rejecting particular lines of enquiry.	Candidates use mathematical language and symbols accurately in presenting a convincing reasoned argument.	Candidates' report includes mathematical justifications, explaining their solutions to problems involving a number of features or variables.
	Candidates consider and evaluate a number of approaches to a substantial task. They explore extensively a context or area of mathematics with which they are unfamiliar. They apply independently a range of appropriate mathematical techniques.	Candidates use mathematical language and symbols accurately in presenting a concise reasoned argument.	Candidates provide a mathematically rigorous justification or proof of their solution to a complex problem, considering the conditions under which it remains valid.

The SMILE 2001 Network

The 2001 SMILE Network reflects the Mathematics National Curriculum 2000 and the KS3 Framework for Teaching Mathematics 2001. The Network is intended to assist teachers in planning and recording a scheme of work for each student according to their mathematical needs.

The Network can be used as a formative record of the student's progress throughout Key Stages 3 and 4 and as an aid to summative teacher assessment at the end of Key Stage 3 because the SMILE activities are arranged to reflect the sections of the Programme of Study.

A student's Network provides evidence of the extent to which the Programme of Study has been covered. The final decision about which Level Description best fits the student should be made in the light of work satisfactorily completed and understood and the teacher's knowledge of the student's mathematical ability.

```
The Inside of the SMILE Network - The programmes of study for mathematics
The SMILE Network contains a variety of different codes which are intended to provide help for teachers
when setting work for a student. These are explained below.
World View Activities which require thought and planning before being set for students
1886
Algebra A SMILE activity which is a worksheet - found in the SMILE Worksheet Pack.
Match w/s Written in lower case letters.
2203
Target 200 A SMILE activity which can be found in SMILE 1783 Calculating Booklet, page 16
(Calculating Pg 16)
2114
Hundred Fit A SMILE activity which is not usually stored with the workcards or worksheets.
(box) Written in lower case letters in brackets, e.g. (poster).
2 3 0 3
Solve it A SMILE activity. The number inside a bracket indicates a longer activity. The
0740 (2) number gives a guide to the approximate expected length of the activity.
Up the A SMILE activity. Either investigative or practical where the work can only be
Stairs
2185 (*)
Comparing
Areas
(DIME)
2291
```


The Outside of the SMILE Network

Assessment Grids To aid the recording of:

- NFER results
- termly assessment and attainment grades
- individual action targets
- SEN and IEP's

Using and applying mathematics criteria reflect the three stands for Key Stage 4.
Other Resources SMILE resources which are:

- Teacher Resources
- \quad Support materials for students
- Additional resources

Teacher resources from SMILE - in numerical order

The following SMILE materials come as part of either a Full Class Set or a Single Copy Set and are not recorded on the inside of the SMILE Network.

1701 Post Half Posters Good display poster to encourage project work on area and fractions.
2112 Imaginings
2176 Talking Poster
A collection of lesson starters and enders, based upon 3-D visualisation.
Good display poster to encourage mathematical discussion.
2292 Towers (box)
2324 Reckonings
2376 Maths in Your Head
A game for revision for Key Stages 3 \& 4, based upon Trivial Pursuit.
A collection of lesson starters and enders, based upon mental mathematics
A collection of lesson starters and enders, based upon mental mathematics

Support materials for students from SMILE - in numerical order

The following SMILE materials come as part of either a Full Class Set or a Single Copy Set and are not recorded on the inside of the SMILE Network.

1783 Calculating Booklet Each activity in this booklet has been referenced on the SMILE Network from SMILE 2113 to SMILE 2126.
2002 Real Spirals A good resource for project work on spirals.

2096 Fraction Playing Cards A resource for students, also needed for SMILE 2097 and SMILE 2105.
2163 Geometry Facts This is referenced on many SMILE activities where students need to find definitions of shapes and angles.
2226 Number Playing Cards A resource for students which is referenced on many SMILE activities where students require number cards.
2323 Statisical Inv. Help Book A resource for students.
2364 Decimal Playing Cards A resource for students, also needed for SMILE 2365, SMILE 2366, SMILE 2368 and SMILE 2369.

Additional resources available from SMILE Mathematics

The following SMILE materials do not come as part of the classroom materials, but are for use as whole class lessons, to aid group work and differentiation.

Bridging Units 2 units suitable for Year 7.
Nice Ideas in one place V. 1 \& 2 Contains 25 and 20 activities respectively for KS 3 and 4.
Reasonings Contains 27 activities suitable for KS 3.
Revision through Groupwork 9 topics allowing for differentiation.
Whole Class Projects 8 projects, suitable for KS 3 and 4.

Additional resources from SMILE Mathematics for Assessment

The following pack does not come as part of the classroom materials.
Assessment Pack Provides starting activities and diagostic tests for Levels 2 to 6

Resource programs from SMILE Mathematics

The following programs do not come as part of the classroom materials.

1650 Take Part (DfEE)	1796 Plotter (GRAPH)	1903 Numbers (PROP/NO)
1702 Circle (INVEST)	1851 Regions (GRAPH)	2373 Queens (MOVE)
1776 Spirals (INVEST)	1853 Pinball (INVEST)	

Network 6 - EP

April 2001 0001-2403

The grids below are designed to aid the recording of student assessment over a period of time.
Inital Teacher Assessment

						Key Stage 2

Key Stage 3 Assessment

							Key	age 3
							TA	SAT's

Key Stage 4 Assessment

Blue in the Face 2197	Origami Dodecahedron 2218	Dissection 1911 1911	Polygon Symmetries 1873 (*)	$\begin{aligned} & \text { Angles in a } \\ & \text { Semmecricle } \\ & 1935 \end{aligned}$	$\begin{aligned} & \text { Aboul Nodes } \\ & 0342 \end{aligned}$	Four Pentiominoes 1928 (2)	Line Symmoty B $4-6$ ${ }_{1}($ DIME) (2)	$\begin{aligned} & \text { Translations } \\ & 1934 \end{aligned}$	$\begin{aligned} & \text { Combining } \\ & \text { Transtormations } \\ & 1561 \\ & \begin{array}{l} \text { (2) } \end{array} \end{aligned}$	Nets of Pyramids 0720	Les: are 05
Build and Balance (DIME) 1879 (3)		$\begin{aligned} & \text { Weaving } \\ & \text { w/s } \\ & 1647 \end{aligned}$		Cyclic Quadriateral 0165	The inseparables 0492 (*)	Areas ol Similar Shapes	$\begin{array}{ll} \text { Line Symmetry B } \\ \begin{array}{ll} \text { B } \\ \text { (DiME } \\ 1894 & \text { (2). } \end{array} \end{array}$	Aace Game (MOVE 1654	Shape Sequences 2214 (*)	$\begin{aligned} & \text { Spiralling } \\ & \text { PPuarates } \\ & \text { Panems } \end{aligned}$	
Euler Solids (MA Poster) 1354							Reflections (DIME) 1337	Joumeys 1329	$\begin{aligned} & \text { Cube Cuts } \\ & 0675 \end{aligned}$	Constructive Designs 2141 (3)	
1354 (3)							1337 (5)	Vectors and Squares 2201	Cross Stitch $\begin{equation*} 2145 \tag{*} \end{equation*}$	Tie w/s $\begin{equation*} 2058 \tag{2} \end{equation*}$	
$\begin{aligned} & 2132 \\ & \\ & \text { Cut a } \\ & \text { Cube } \\ & 2232 \end{aligned}$								Avoiding Each Oiner 1777		$\begin{aligned} & \text { Elllpses by } \\ & \text { Folding } \\ & 2055 \end{aligned}$	
										Painted Tyres 1912 (*)	

End of level review: Shape, Space and Measurements 2354 (2)

Wedges 2 (DIME) 1883 (3)	$\begin{aligned} & \text { The Other } \\ & \text { Side } \\ & 1857 \end{aligned}$	$\begin{aligned} & \text { Family of } \\ & \text { Quadriaterals } \\ & 0738 \end{aligned}$	Regular Polygons 0731 (2)	Similar Tnangles 2027	Combined Reflections 1562 (2)	$\begin{aligned} & \text { Vectmeet } \\ & \text { MOVE) } \\ & 1622 \end{aligned}$	$\begin{aligned} & \text { Transtoming } \\ & \text { Tnangles } \\ & 2148 \end{aligned}$
		Polygons and Alght Angles 1843 ($\left.{ }^{(}\right)$	Angles in 2062	Lengths of Simiar Objects 1259 (2)		Force Meel 0894 (2)	$\begin{aligned} & \text { Matrices and } \\ & \text { Transtomations } \\ & 0797 \\ & \hline \end{aligned}$
				$\begin{align*} & \text { Nine } \\ & \text { Pentominoes } \\ & 1929 \quad \text { (2) } \tag{2} \end{align*}$		Vector 1013	$\begin{aligned} & \text { Square } \\ & \text { Jqgas } \\ & \text { (box } \\ & \hline 1688 \end{aligned}$
				$\begin{aligned} & \text { Similanty } \\ & \text { Problems } \\ & 1560 \end{aligned}$			Wedges (DIME) 1338 (5)
				Negative Scale 0845 (2)			$\begin{aligned} & \text { Transtomations } \\ & 1156 \end{aligned}$

$\begin{aligned} & \text { Spheres } \\ & 1679 \end{aligned}$	$\begin{aligned} & \text { Folding } \\ & 1681 \end{aligned}$	$\begin{aligned} & \text { Simular } \\ & \text { Sollds } \\ & 1261 \end{aligned}$	Matnces for Rolations 1456	Rellection Matnces 1458	$\begin{aligned} & \text { Vectors } \\ & 1177 \end{aligned}$	Islamic Patterns in Logo 2093	Minimum Information 1832
	Identical Halves 1795	Matrices 1922 (2)	Combining 1457		More Vectors 1178 (2)	ATranslomation Sechnioue 1400	
					Column Vectors 1179 (2)	$\begin{aligned} & \text { Scale } \\ & \text { Maps } \\ & 2085 \end{aligned}$	
					Dividing in a Given Aatio 1011 (2)	$\begin{aligned} & \text { Isometries } \\ & 1028 \end{aligned}$	
					$\begin{aligned} & \text { Vector } \\ & \text { Areas } \\ & 2050 \end{aligned}$	Matrices for Shears 1459	

Using and applying mathematics

The assessment criteria below are to be used to assess Using and applying mathematics in the context of Number and algebra and Shape, space and measures.
Separate assessment criteria must be used for assessing Handling data at Key Stage 4.

Level	Making and monitoring decisions to solve problems	Communicating mathematically	Developing skills of mathematical reasoning
	Candidates use mathematics as an integral part of classroom activities.	Candidates represent their work with object or pictures and discuss their work.	Candidates recognise and use a simple pattern or relation ship, usually based on their experience.
2	Candidates select the mathematics for some classroom activities.	Candidates discuss their work using familiar mathematical language and are beginning to represent it using symbols and simple diagrams.	Candidates ask and respond appropriately to questions including 'What would happen if ..?"
	Candidates try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise work and check results.	Candidates discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams.	Candidates show that they understand a general statement by finding particular examples that match it.
4	Candidates are developing their own strategies for solving problems and are using these strategies both in working within mathematics and in applying mathematics to practical contexts.	Candidates present information and results in a clear and organised way, explaining reasons for their presentation.	Candidates search for a pattern by trying out ideas of their own.
	In order to carry through tasks and solve mathematical problems, candidates identify and obtain necessary information; they check their results, considering whether these are sensible	Candidates show understanding of situations by describing them mathematically using symbols, words and diagrams.	Candidates make general statements of their own based on evidence they have produced and give an explanation of their reasoning.
	Candidates carry through substantial tasks and solve quite complex problems by breaking then down into smaller, more manageable tasks.	Candidates interpret, discuss and synthesise information presented in a variety of mathematical forms. Their writing explains and informs their use of diagrams.	Candidates are beginning to give a mathematical justification for their generalisations; they test them by checking particular cases.
	Starting from problems or contexts that have been presented to them, candidates introduce questions of their own, which generate fuller solutions.	Candidates examine critically and justify their choice of mathematical presentation, considering alternative approaches and explaining improvements they have made.	Candidates justify their generalisations of solutions, showing some insight into the mathematical structure of the situations being investigated. They appreciate the difference between mathematical explanation and experimental evidence.
	Candidates develop and follow alternative approaches. They reflect on their own lines of enquiry when exploring mathematical tasks; in doing so they introduce and use a range of mathematical techniques.	Candidates convey mathematical meaning through consistent use of symbols.	Candidates examine generalisations or solutions reached in an activity, commenting constructively on the reasoning and logic employed, and make further progress in the activity as a result.
	Candidates analyse alternative approaches to problems involving a number of features or variables. They give detailed reasons for following or rejecting particular lines of enquiry.	Candidates use mathematical language and symbols accurately in presenting a convincing reasoned argument.	Candidates' report includes mathematical justifications, explaining their solutions to problems involving a number of features or variables.
	Candidates consider and evaluate a number of approaches to a substantial task. They explore extensively a context or area of mathematics with which they are unfamiliar. They apply independently a range of appropriate mathematical techniques.	Candidates use mathematical language and symbols accurately in presenting a concise reasoned argument.	Candidates provide a mathematically rigorous justification or proof of their solution to a complex problem, considering the conditions under which it remains valid.

The SMILE 2001 Network

The 2001 SMILE Network reflects the Mathematics National Curriculum 2000 and the KS3 Framework for Teaching Mathematics 2001. The Network is intended to assist teachers in planning and recording a scheme of work for each student according to their mathematical needs.

The Network can be used as a formative record of the student's progress throughout Key Stages 3 and 4 and as an aid to summative teacher assessment at the end of Key Stage 3 because the SMILE activities are arranged to reflect the sections of the Programme of Study.

A student's Network provides evidence of the extent to which the Programme of Study has been covered. The final decision about which Level Description best fits the student should be made in the light of work satisfactorily completed and understood and the teacher's knowledge of the student's mathematical ability.

The Inside of the SMILE Network - The programmes of study for mathematics

The SMILE Network contains a variety of different codes which are intended to provide help for teachers when setting work for a student. These are explained below.

World View 1886	Activities which require thought and planning before being set for students.
Algebra Match w/s 2203	A SMILE activity which is a worksheet - found in the SMILE Worksheet Pack. Written in lower case letters.
Target 200 (Calculating Pg 16) 2114	A SMILE activity which can be found in SMILE 1783 Calculating Booklet, page 16 Written in lower case letters in brackets.
$\begin{aligned} & \text { Hundred Fit } \\ & \text { (box) } \\ & 2303 \end{aligned}$	A SMILE activity which is not usually stored with the workcards or worksheets. Written in lower case letters in brackets, e.g. (poster).
Solve it 0740 (2)	A SMILE activity. The number inside a bracket indicates a longer activity. The number gives a guide to the approximate expected length of the activity.
Up the Stairs 2185 (*)	A SMILE activity. Either investigative or practical where the work can only be assessed after the activity has been completed.
Comparing Areas (DIME) 2291	Activities from other publishers and SMILE software are identified by the source written in upper case letters in brackets. Full details of all these are found on the SMILE Commercial References Sheet, available from SMILE Mathematics.

The Outside of the SMILE Network

Assessment Grids \quad To aid the recording of:	
- NFER results	
- termly assessment and attainment grades	
- individual action targets	
	- SEN and IEP's

Using and applying mathematics criteria reflect the three stands for Key Stage 4.

Other Resources	SMILE resources which are:
	- \quad Teacher Resources
	- \quad Support materials for students
	Additional resources

Teacher resources from SMILE - in numerical order

The following SMILE materials come as part of either a Full Class Set or a Single Copy Set and are not recorded on the inside of the SMILE Network.

1701 Post Half Posters	Good display poster to encourage project work on area and fractions.
2112 Imaginings	A collection of lesson starters and enders, based upon 3-D visualisation. Good display poster to encourage mathematical discussion.
2176 Talking Poster	A game for revision for Key Stages 3 \& 4, based upon Trivial 2292 Towers (box) 2324 Reckonings 2376 Marsuit.
Maths in Your Head	A collection of lesson starters and enders, based upon mental mathematics
A collection of lesson starters and enders, based upon	
mental mathematics	

Support materials for students from SMILE - in numerical order

The following SMILE materials come as part of either a Full Class Set or a Single Copy Set and are not recorded on the inside of the SMILE Network.

1783 Calculating Booklet	Each activity in this booklet has been referenced on the SMILE Network from SMILE 2113 to SMILE 2126.
2002 Real Spirals	A good resource for project work on spirals.
2096 Fraction Playing Cards	A resource for students, also needed for SMILE 2097 and SMILE 2105.
2163 Geometry Facts	This is referenced on many SMILE activities where students need to find definitions of shapes and angles.
2226 Number Playing Cards	A resource for students which is referenced on many SMILE activities where students require number cards.
2323 Statisical Inv. Help Boolk A resource for students.	

Additional resources available from SMILE Mathematics

The following SMILE materials do not come as part of the classroom materials, but are for use as whole class lessons, to aid group work and differentiation.

Bridging Units 2 units suitable for Year 7
Nice Ideas in one place V. 1 \& 2 Contains 25 and 20 activities respectively for KS 3 and 4.
Reasonings Contains 27 activities suitable for KS 3.
Revision through Groupwork 9 topics allowing for differentiation.
Whole Class Projects 8 projects, suitable for KS 3 and 4.

Additional resources from SMILE Mathematics for Assessment

The following pack does not come as part of the classroom materials.
Assessment Pack
Provides starting activities and diagostic tests for Levels 2 to 6

Resource programs from SMILE Mathematics

The following programs do not come as part of the classroom materials.

1650 Take Part (DfEE)	1796 Plotter (GRAPH)	1903 Numbers (PROP/NO)
1702 Circle (INVEST)	1851 Regions (GRAPH)	2373 Queens (MOVE)
1776 Spirals (INVEST)	1853 Pinball (INVEST)	

1828	Find the Shape	2171	Pie Chart Match	2339**	$2 \times$ Table
1844	Straight Lines	2173	Unmarked Angles	2340**	$3 \times$ Table
1847	Symmetrical Triangles	2174	The Mode	2341**	$4 \times$ Table
1849	100 Search	2178a	(Volumes)	2342**	$5 \times$ Table
1856	What Shapes?	2186	Missing Pieces	2343**	$6 \times$ Table
1862	Even Animal	2188a-	(Population Pyramids)	2344**	$7 \times$ Table
1868	Symmetry Match (A3)	2193	Number Square Words	2345**	$8 \times$ Table
1902a	(Short Middle Long)	2199	Percentage Estimation	2346**	$9 \times$ Table
1904	Find the Operation	2203	Algebra Match	2347**	$10 \times$ Table
1907	About How Long?	2205a	(Making 25p)	2348**	$11 \times$ Table
1911	Dissection Pairs	2206a	(Exploring Sine Curves)	2349**	$12 \times$ Table
1914	Adding Counters	2207a	(Pinball Experiments)	2357	Matching Algebraic Exps
1919	How many Centimetre Squares?	2211	Equivalent Expressions	2358	Angle Fit
1931a	(Which Scripts?)	2212	10 Search	2360	Rotational \& Line Symmetry Review
1942	Growing Patterns	2213	Sum Message	2362	Decimal Routes
1945	Square Diagonals	2216	From Matches to Mappings	2372	Powers of Ten Flags
1959a-d	(Making One)	2219a	(Origami Cube)	2382	Areas of Polygons
1999a	(Equiangular worksheet)	2220a	(Trig for any Triangle)	2387	Multiples of Ten
2003a*	(Birthday Dates)	2222	Equal Areas?	2389	Percentage Puzzle
2019	Power Match	2223	Fraction to Decimal Match	2391	Matching Weights
2020	High Powered Matching	2224a	(Shajjad's Collection)	2398	Decimal Places Match
2022a	(Fewest Keys)	2225a	(Wildlife Collection)	2400	Circle Cut
2023	Alphabet Symmetry	2230	Which has the Largest Area?	2401a	(Play Your Cards Right)
2031a+	(Spiralling Squares)	2233	(Cafe Menu)	2402	Equivalent Fractions Sort
2034a	(Likely or Unlikely)	2237	Words Won't Fail Me?		
2035	Symmetry Codes	2239	Putting in Order		
2037a	(3 in 1 Maze)	2240	Ask me Another		
2045	Hot and Cold	2242	Decimal Flags		
2054a	(4 Sides)	2247a	(More Than, Less Than)		
2056	Surrounding Right-angled Tri.	2251	Put them in their Place	DIME produced worksheets	
2058	Tie	2252	Something and a Half		
2079a	(Sketchy Activity)	2256	Matching Fractions	These are available from Tarquin Publications. See Commercial Reference Sheet	
2082a	(Opp, Adj and Hypotenuse)	2258a	(Substititing into Formulae)		
2088	What's the Difference?	2259	Multiplication Flags		
2089	Oxford Street	2261	Shape-Tiles	1331	(Equal Angles)
2095	Squares, Cubes and Roots	2262	Find the Route	1332	(Rotation)
2107	Oxfam Collection	2264	Plus and Minus Grids	1333	(Directions) (Flags)
2110	Number Sort	2267a	(Introducing Ratio)	1340	(Pattern and Notation)
2111a-c	+ (Rot Symmetry Jigsaws)	2274	abc	1341	(Number Machines)
2129	Tens and Fives	2278	Mapping Jigsaw	1342	(Mappings and Graphs)
2131	Filing Cards	2279c-d (Island Game)		1343	(Simple Mappings)
2133	Out of 100	2292a	(Towers)	1344	(Further Mappings)
2134a	(Similar Rectangles)	2296	Mapping Rectangles	1866	(Reflection Activities)
2143	Percentages of Money	2305	Hexagon Puzzle	2073	A1, A2, A3, A4 ${ }^{\text {a }}$ (Tricube
2147	Odd Animal	2306	Patterns on a Line	2074	C1, C5, C6, C8 Puzzles
2151a	(The Root of the Problem)	2308	Word Match	2076	D1, D5, D8, D10
2153	£1 Search	2310	Sequences Jigsaw	2077	E3, E7, E10
2154a	(Sum Dice Number Cards)	2321a	(The Algebra Game)	2286	A3, A4
2155a	(Visualising)	2330	Missing Angles	2287	A5, A6
2157	Some Sums for your mind	2332	Decimals on a Number Line	2288	B1- B6 Algebra through
2158a-c	Turning Green	2333	Quiz Times	2289	C1-C6 \quad Geometry
2160a	(Fraction Ruler)	2336a	(Comparing Ratios)	2290	D1-D6
2161	Shape Names	2338	Decimal Search	2291	E1, E3, E4

The SMILE Worksheet pack contains one copy of the following worksheets for duplication in school.
Those marked with:

* should be duplicated onto card so that it can be used to make models, to play a game, to use as a template, etc.
+ should be duplicated onto coloured paper.
**should be made up into an 8 page booklet.
Where the name of the activity is in brackets, this indicates that an additional card is needed.

0027	Number Squares	0475c	(All Change)	1376a	(Jobs in Order)
0028	Number Squares 2	0476	Mappings	1379	Fishing
0030	Number Squares 4	0493	Sam Shape	1390	Multiplication Table Facts
0031	Find the Number 1	0510	Radar	1417a*	(Tens Counters)
0033	Find the Number 3	0550	Adding Shifts	1419a+	(Versa-Tiles)
0034	Find the Number 4	0577	Reflect	1422a	(8/12/16-point circles)
0057	Fractions 3	0579a	(Cut-outs for Two Loops)	1463	Use Brackets!
0058	Fractions 4	0592a	(Powerful Rules)	1525	Economical Weaving
0066a*	(Napiers Rods)	0614	Powers of Ten	1555	Mystic Rose
0069	Cardioid	0617	Looking Around	1557	Spirals
0074	Sum and Product	0696a	(Number Codex)	1565	Symmetry
0098	Plaited Cube	0697	Hidden Shapes	1570	Pounds and Pence
0099	Sum and Product Again	0705	Cross Puzzles	1592	Two Cuts Investigation
0114	Nines	0713	Jumping Jack	1627	Self Portrait
0121	100 Square Patterns	0725	Race Track	1628a*	(Eight Squares cut-out)
0168	Right Angled Triangles	0730	Rotations	1629	Pentagons
0178	Rectangles	0735	Knots	1635	The Key to Success
0184	Number Puzzle	0738a	(Family of Quadrilaterals)	1636	Calculator Flags
0242	Cracking the Code	0777	Satellite Signals	1643a*	Cards (Lucky Dip)
0251	Mirror Symmetry	0808a	(Code Breaking)	1643b	Score Sheet (Lucky Dip)
0259	Shading Fractions	0824h	Pentagram (Golden Rectangle))1647	Weaving
0264	Cartoon Co-ordinates	0824j	Rectangle (Golden Rectangle)	1668a	(Mapping Puzzle)
0272	A Vehicle Survey	0839	Rotate This Way	1669	Sim
0288	Rolling Two Dice	0845a	(Negative Scale Factor)	1679d-	f(Spheres)
0292	Doubling Patterns	0849	Anywhere on the Number Line	1703	Find the Uncle
0316	Counting On/Back	0852a	(Colouring Triangles)	1711	Missing Digits
0327	Centres of Rotation	0853a	(Grids)	1712	Four Signs
0330a	(Multiple Patterns)	0868	Evens	1717	Add-a-square
0341	Nodes	0869	Puzzle Worksheet	1733	An Even Code
0346	Sequences in Squares	0881	24 Squares	1734	An Islamic Design
0352	Table Squares	0894b	(Force Meet Pack)	1749a	(Decimal Jigsaw)
0354	Tom the Bowling Champ	0895	Jumps	1753	Matching Pairs
0359	How Many Colours?	0905a	(Domino Puzzle)	1758	Co-ordinate Messages
0367	Fraction Wall	1095	Percentages	1759	Shapes That Can Grow
0383	Building Shapes	1096	Marks to Percentages	1760	One Straight Cut
0384	Changing Grids	1278a	(Multiplying Directed Numbers))1761	Gelosia Problems
0390	Surfaces	1299	Tangram Arrows	1768	Zigzag
0396	Hexagons	1309	More Vector Messages	1792a	(Feeling Hungry)
0397a*	(Operations)	1317**	Mult \& Div by 10, 100, 1000	1795	Identical Halves
0404	Solids	1321	Prism or Pyramid?	1799	Boxes
0424	How Many Routes?	1355	Halves and Quarters	1812	Find Four Squares
0448	Favourite Colours	1358	Joining Multiples	1813	Crossword
0456	Midpoint Sequences	1359	Joining Odds and Evens	1818a	(Helicopter Photographs)
0470	Nephroid	1360	Pictures from Multiples	1824	Silver Earrings

The following are likely to be needed for many of the SMILE activities.

angle indicators	dominoes	pegs
box of coins	drawing pins	pegboards
box of shapes (labelled with	elastic bands	pentominoes
names)	glue	pinboards
box of solids	logiblocks (Attribute blocks)	protractors
calculators (4 function, scientific	maps - (LT map etc.)	rotograms
and graphic)	matches	rulers (mm and cm)
centicubes	match boxes	scissors
compasses	metre rule	sellotape
computer	mirrors	set square
counters	multilink cubes	Tak-Tiles (DIME)
dice	pack of cards	tape measure
DIME solids	paper clips	

The following are needed specifically for only one or two SMILE activities.

Highway Code
Karnaugh map (4×4 grid to accommodate logiblocks) 2 loop and 3 loop boards marbles Napier's Rods (optional) newspapers
dominoes pegs
drawing pins
logiblocks (Attribute blocks)
maps - (LT map etc.)
match boxes
metre rule
mirrors
multilink cubes
paper clips
probability maze shopping catalogue Soma Cube stop clock thermometer Tricubes (DIME) weights

The following types of paper will be required.

1 cm square paper
1 cm square dotty paper
2 cm square paper
1 cm isometric paper
1 cm isometric dotty paper

2 cm isometric paper
100 squares
multiplication squares
plain paper
tracing paper
gummed paper
card
graph paper (1 mm and 2 mm) paper circles (filter papers) gummed strips

Materials to support the use of technology in the mathematics classroom.
LOGO, a spreadsheet and a geometry drawing package.
Spreadsheets from SMILE Teachers' book (SMILE)
Hints and Answers Book (SMILE)

For a list of commercially published materials which are referred to on the 2001 SMILE Network, please see the Commercial Reference Sources sheet obtainable from SMILE Mathematics.

Isaac Newton Centre 108A Lancaster Road London W11 1QS Tel. 02075984841
Fax. 02075984838
Email. info@smilemathematics.co.uk Web. wuw.smilemathematics.co.uk

SMILE Mathematics
Numbered Set 37 (ied File)

$$
2350-2403
$$

Matching Algebraic Expressions

1. Cut out the 9 equilateral triangles along the dotted lines.
2. Match the equivalent algebraic expressions:

$$
\text { Example: } \begin{aligned}
\frac{24 y z^{5}}{-6 y z} & =\frac{24 \times y \times z \times z \times z \times z \times z}{-6 \times y \times z} \\
& =-4 z^{4}
\end{aligned}
$$

3. Record your working out in your book.
4. Fit the equilateral triangles together to make one large triangle. The shaded sections mark the edges of the triangle.

Angle Fit

Carefully cut out the following shapes.

1. By looking at the size of the angles, fit them in this rectangle.

2. Calculate angles $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d}.
$\mathbf{a}=$
$b=$
$C=$
$d=$
© RBKC SMILE 2001

Approximate Solutions

1. What is 46×17 ?

Give a rough answer, using the same method. What calculation did you use?
2. Copy and complete this table:

calculations	rough calculations	rough answers
$583 \div 18$	$600 \div 20$	30
408×68		
$875 \div 23$		
79×22		
$576 \div 27$		
67×81		

3. Choose your own rough calculations to complete this table:

calculations	rough calculations (approximations)	rough answers (approximate solutions)
71×88		
$383 \div 53$		
49×48		

4. Here is a problem and some calculations.

a) Which two calculations must be wrong?
b) Which two calculations give approximate solutions to the problem?
c) Which calculation would you use?
5. Copy and complete this table in your book.

	problems	calculations	approximations	approximate solutions
a)	There are 36 eggs in a tray. A box of eggs contains 12 trays of eggs. About how many eggs are in a box?			
b)	About how many 62 seater coaches are needed to take a school of 1796 students on a trip?			
c)	A bottle of cola contains 1950ml. About how many millilitres in 11 bottles?			
d)	A bottle of cola contains 1950 ml . 205 ml are needed to fill a cup. About how many cups can be filled?			

6. A job pays $£ 214$ per week.

About how much is this in one year (52 weeks)?
7. Each student needs 27 centicubes to build a larger cube.

There are 29 students in the class.
About how many centicubes are needed?
8. One pint of milk is sufficient for 22 cups of tea.

About how many pints are needed for 485 cups of tea?

Rotational and line symmetry review

An activity for two. You will both need a copy of this worksheet.

Some shapes have line symmetry	Some shapes have rotational symmetry	Some shapes have both
have neither		

1. On your awn:

- Cut out the shapes below.
- Arrange them in the correct regions on the Venn diagram.

1. On y()ur own:

- Compare your answers.
- When you have agreed, stick them down.
- Draw 4 shapes of your own, one to go in each region.

© REKC SMILE 2001

Right-angle or not?

You will need tracing paper.

There are many right-angles around.
For example, the corners of this card are right-angles.

This is a right-angle.

1. Trace the right-angle and place it over the top of the angles to find out which ones are right-angles.
2. Copy and complete the table.

Angle	Right-angle
A	Yes
B	No
C	
D	
E	
F	
G	
H	
I	
J	
K	
L	

3. Draw a right-angle in your book.
4. Find 5 things around your classroom that have right-angles.

Write a list of them in your book.
Check these with your teacher.

Decimal Routes

You should record any working out here.

Conversion Pack 1

An activity for 2 people

1. Complete the problems on cards A-F. You might find the conversion chart on the back of this envelope helpful.
2. Record your answers in your book. Show your working. Remember to include the units in your answers.
3. You need to know the conversions. Record them in your book and test each other on them.
How many pints?

Match the pairs of cards.

2) 0.265 km
3) 2000 m
4) 1350 mm
e) 265 m
5) 2.65 cm

Who is the heavier?

A rug is 4 foot 5 inches long.

How many inches is this?

Two students are doing a science experiment.

They take 57ml

How much liquid is left in the beaker?

The hand baggage allowance on the flight to Kenya is 5 kg .

Tim's bag contains:

Is Tim's bag too heavy?

Higher decimal win

A game for 2 players.
You will need the SMILE Decimal Playing Cards.
Take out the 13 cards with 'Squares' and the 13 cards with 'Numbers'.
Shuffle the cards.
Deal the cards, face down, in front of you.

Each player turns over one card.
The player with the higher decimal wins that round and keeps both cards.
Carry on until you have used all the cards.
The player with the most cards wins.

Variation

Try turning over 2 cards at a time, adding the two numbers together. The player with the higher decimal wins.

Decimal differences

A game for 2 players.

You will need the SMILE' Decimal Playing Cards.
Take out the 13 cards with 'Squares' and the 13 cards with 'Numbers'. Shuffle the cards.

Deal the cards, face down, in front of you.

Each player turns over one card.
The player with the higher decimal wins that round, and their score is the difference between the two decimals.

e.g.

0.3

Talia scores 0.3

Record your results.

Talia	Janice
$0.7-0.4=0.3$	

Carry on until you have used all the cards.
Total each player's score.
The player with the higher score wins.

Sixteen Quadrilaterals

Definition: Congruent

Congruent shapes have the same shape and size.
e.g. These quadrilaterals are congruent.

You can make 16 different quadrilaterals on a 9 point grid.

1. Find all 16 quadrilaterals.
(Remember none of your quadrilaterals can be congruent.)

- draw them
- label each quadrilateral with the correct mathematical name

(You may like to use Smile 2163 Geometry Facts to find all the names of your quadrilaterals.)

2. You may like to investigate ...

- triangles on a 9 point grid
- other polygons on a 9 point grid.

Sixteen Quadrilaterafs

Definition: Quadrilateral

Quadrilaterals are polygons with four straight sides.

Definition: Congruent

Congruent shapes have the same shape and size. e.g. These quadrilaterals are congruent.

You can make 16 different quadrilaterals on a 9 point grid.

1. Find all 16 quadrilaterals.
(Remember none of your quadrilaterals can be congruent)

- draw them
- label each quadrilateral with the correct mathematical name

(You may like to use Smile 2163 Geometry Facts to find all the names of your quadrilaterals)

2. You may like to investigate ...

- triangles on a 9 point grid
- other polygons on a 9 point grid

Matching decimals

You will need the SMILE Decimal Playing Cards.
Take out the 13 cards with 'squares'.

Put them in order of size smallest first.

smallest

Take out the 13 cards with 'Numbers'.

Match them to the 'Squares'
Number cards.
4. Which is the largest
$0.8,0.08$ or 0.75 ?
5. Write a number that comes between
0.5 and 0.8 .
6. Write a number that comes between 0.35 and 0.4.

Decimal Sort

You will need the SMILE Decimal Playing Cards.

1. Find these 4 cards.

These cards show the same decimal expressed in four different ways. This is the 0.7 decimal 'set'.
2. Sort the remaining cards into decimal 'sets'.
3. Show the decimal 'sets' to your teacher.
© RBKC SMILE Mathematics 2005

Decimal Sort

You will need the SMILE Decimal Playing Cards.

1. Find these 4 cards.

These cards show the same decimal expressed in four different ways.
This is the 0.7 decimal 'set'.
2. Sort the remaining cards into decimal 'sets'.
3. Show the decimal 'sets' to your teacher.

Decimals sCrt

You will need the SMILE Decimal Playing Cards.

1. Find these 4 cards.

These cards show the same decimal expressed in four different ways. This is the 0.62 decimal 'set'.
2. Sort the remaining cards into decimal 'sets'.
3. Show the decimal 'sets' to your teacher.

Conversion Pack 2

An activity for 2 people

1. Complete the problems on cards A - F. You might find the conversion chart on the back of this envelope helpful.
2. Record your answers in your book. Show your working. Remember to include the units in your answers.
3. You need to know the conversions. Record them in your book and test each other on them.

\bullet

Which is the cheaper petrol?

Which contains more liquid?

Which is longer ...

One Yard?

or

One Metre?

How much should a 5 kg bag of potatoes cost?

Andy is making mackerel paté

Recipé

Smoked mackerel................ 60z Cottage cheese......................60z Lemonjuice

Is this
enough cottage cheese?

An activity for 2-4 people.
You will need Smile 2226 Sum Number Cards and 20 counters of the same colour for each player.

1. In your book write down these numbers to the nearest 10.
a) 57
b) 33
c) 45
d) 9
e) 82
f) 55
g) 14
h) 98
2. Turn over to play the Rounding to 10 Game.

Rounding to 10 Game

This is a game for $2-4$ players.
Take out all the 3, 4, 5, 6, 7, 8 and 9 cards from Smile 2226 Sum Number Cards and 20 counters of the same colour for each player.

The Rules:

- Shuffie the cards.
- Place the cards face down.
- Take turns to turn over 2 cards.
- Multiply the two numbers together and round the answer to the nearest 10.
- Use a counter to cover up your rounded number on the board.
- The winner is the first player to get 3 in a line.
- Play the game several times.

Example:

24 rounded to the nearest 10 is 20.
The counter can cover any 20 on the board.

48 rounded to the nearest 10 is 50 .
The counter can cover any 50 on the board.

10	30	20	10	30	40	20
20	10	80	40	60	10	30
50	60	70	20	10	50	40
10	30	10	20	30	20	10
40	30	50	70	10	50	40
60	20	80	40	60	50	10
20	10	40	20	30	10	20

Powers of Ten flays

1) Fill in the flags to show which operation you need to use.

2) Fill in the flags and the circles.

3) This one is more challenging!

The numbers above can be used to make two pairs of equivalent fractions. No number can be used more than once.
example:

1. a) Find another way of making two pairs of equivalent fractions using the numbers 1 to 10.
b) Which numbers are not used?
2. a) How many equivalent fraction pairs can you make using the numbers 1 to 20 ?

Remember- No number can be used more than once.
b) Which numbers are not used? Why?

Polygons in Circles

You will need 1 cm dotted isometric paper and a pair of compasses.

1. a) Draw a circle radius 4 cm on isometric paper. There should be 6 points on the circumference of the circle.

b) Using these 6 points and the centre of the circle, construct a right-angled triangle.
c) Draw the dotted lines and explain why $\angle B A C=60^{\circ}$ and $\angle A B C=30^{\circ}$

2. By drawing similar circles construct the following polygons and work out the angles in the polygons. You might like to use Smile 2163 Geometry Facts.
a) An equilateral triangle.
b) An isosceles triangle.
c) A rectangle.
d) A trapezium.
e) An arrowhead.
f) A rhombus.
g) A hexagon.
h) A pentagon.
3. Which of your polygons are cyclic?

Definition of a cyclic polygon:

Any polygon whose vertices all lie on the circumference of a circle is called a cyclic polygon.

Polygons in Circles

You will need 1 cm dotted isometric paper and a pair of compasse:

1. a) Draw a circle of radius 4 cm on isometric paper.

There should be 6 points on the circumference of the circle.

b) Using these 6 points and the centre of the circle construct a right angled triangle.

c) Draw the dotted lines and explain why $\angle B A C=60^{\circ}$ and $\angle A B C=30^{\circ}$

2. By drawing similar circles construct the following polygons and work out the angles in the polygons. You might like to use Smile 2163 Geometry Facts.
a. An equilateral triangle.
b. An isosceles triangle.
c. A rectangle.
d. A trapezium.
e. An arrowhead.
f. A rhombus.
g. A hexagon.
h. A pentagon.

Definition of a cyclic polygon:
Any polygon whose vertices all lie on the circumference of a circle is called a cyclic polygon.
3. Which of your polygons are cyclic.

Areas of Polygons

1. Calculate the areas of the polygons below.

2. Sort the polygons in order of area, largest first.
3. Design 3 more polygons on the 4×4 grids below and find their area.

Solid Expressions

This cuboid has height \boldsymbol{h}, width \boldsymbol{w} and length l.

An expression for the volume of this cuboid is $\boldsymbol{h w l}$. An expression for the surface area of this cuboid is $\mathbf{2}(h w+h l+w l)$.
An expression for the total edge length of this cuboid is $4(h+w+l)$.

1. This right-angled triangular prism has height h, width w and length l.

Work out:
a) An expression for the volume.
b) An expression for the surface area.
c) An expression for the total edge length.
2. This cylinder has diameter \boldsymbol{d} and height \boldsymbol{h}.

a) Show that the surface area of the cylinder can be expressed as $\frac{\pi d^{2}}{2}+\pi d h$
Work out:
b) An expression for the volume.
c) An expression for the total edge length.
3. This equilateral triangular prism has width w and length l.
r

a) Show that the volume of this prism can be expressed as $\frac{\sqrt{3} l w^{2}}{4}$
Work out:
b) An expression for the surface area.
c) An expression for the total edge length.
4. Copy and complete this table:

	Cuboid	Rightangled triangular prism	Cylinder	Equilateral triangular prism
Diagram		$\stackrel{A}{h}$		
Volume	hwl			$\frac{\sqrt{3} l w^{2}}{4}$
Surface area	$2(h w+h l+w l)$		$\frac{\pi d^{2}}{2}+\pi d h$	
Total edge length	$4(h+w+l)$			

5. Look carefully at the expression for each of the solids. How would you decide if an expression described:
a) volume?
b) surface area?
c) total edge length?
6. The regular hexagonal prism below has the dimensions shown.

The three expressions for the hexagonal prism are:
$6 l w+3 \sqrt{3} w^{2}$.
$12 w+6 l$
$\frac{3 \sqrt{3} l w^{2}}{2}$
a) Which of the three expressions describes the volume of the regular hexagonal prism?
b) Which of the three expressions describes the surface area of the regular hexagonal prism?
c) Which of the three expressions describes the total edge length of the regular hexagonal prism?

Angles in a Regular Hexagon

The regular hexagon below is drawn on isometric dotted paper.
Find all the unmarked angles.

Nine Nine Nine

1. Copy and complete the following multiplication sequences.

2. Write about your methods. How did you work out the sequences?
3. Do your methods still work for:

| $10 \times 9=$ |
| :--- | :--- | :--- |
| $11 \times 9=$ |
| $12 \times 9=$ |
| $13 \times 9=$ |
| $10 \times 99=$ |
| $11 \times 99=$ |
| $12 \times 99=$ |
| $13 \times 99=$ |\quad| $10 \times 999=$ |
| :--- |
| $11 \times 999=$ |
| $12 \times 999=$ |
| $13 \times 999=$ |

Multiplication Review

An activity for 2 or more people

In this pack there are five methods of multiplication.

For each one:

1. Look at the method of multiplication.
2. Describe what was done.
3. Check that the method works by trying it out on 27×69.
4. Try to work out why the method works.

$52 \times 37=$?

1. Look at this method of multiplication.
2. Describe what was done.
3. Check that this method works by trying it out on 27×69.
4. Try to work out why the method works.

$52 \times 37=$?

$1500+350+60+14=1924$

1. Look at this method of multiplication.
2. Describe what was done.
3. Check that this method works by trying it out on 27×69.
4. Try to work out why the method works.

$52 \times 37=$?

$$
\begin{aligned}
& 52 \times 10=520 \\
& 52 \times 20=1040 \\
& 52 \times 40=2080 \\
& 52 \times 3=156
\end{aligned}
$$

$52 \times 37=1924$

1. Look at this method of multiplication.
2. Describe what was done.
3. Check that this method works by trying it out on 27×69.
4. Try to work out why the method works.

$52 \times 37=$?

1. Look at this method of multiplication.
2. Describe what was done.
3. Check that this method works by trying it out on 27×69.
4. Try to work out why the method works.

$52 \times 37=$?

1924

1. Look at this method of multiplication.
2. Describe what was done.
3. Check that this method works by trying it out on 27×69.
4. Try to work out why the method works.

.Multiples of Ten

The multiples of a number are the numbers that appear in its multiplication table.

Example:

The multiples of 10 are $\mathbf{1 0}, \mathbf{2 0}, \mathbf{3 0}, \mathbf{4 0}, \ldots$

1. This number square contains pairs of numbers next to each other whose sum is a multiple of 10.

1	2	3	4	5	6	Example:
7	8	9	10	11	12	12
13	14	15	16	17	18	18
19	20	21	22	23	24	$12+18=30$
25	26	27	28	29	30	
31	32	33	34	35	36	

Find and mark five other pairs of numbers whose sum is a multiple of 10.
2. On this grid mark the three groups of numbers in this shape

whose sum is a multiple of 10.

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

3. On this grid mark the five groups of numbers in this shape

whose sum
is a multiple of 10 .

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

4. On this grid mark the two groups of numbers in this shape

whose sum
is a multiple of 10 .

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

5. On this grid mark the four groups of numbers

	1	2	3	4	5	6
whose sum is a multiple of 10 .	7	8	9	10	11	12
	13	14	15	16	17	18
	19	20	21	22	23	24
	25	26	27	28	29	30
	31	32	33	34	35	36

6. On this grid mark the four groups of numbers in this shape

whose sum
is a multiple of 10 .

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

7. What other groups of numbers can you find whose sum is a multiple of 10? Mark them on the grid below.

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

Six Pyramids

An activity for a small group.
This 6 cm cube has been divided into six congruent pyramids.

Calculate the dimensions of each pyramid ...
... and use these dimensions to make six pyramids. Stick them onto the net of a 6 cm cube.

Check that your pyramids fold back into a cube.

Now fold the cube net so that the pyramids are on the outside.

Solve the problems below for your new solid.
For each problem assume there are no hollow spaces inside the solid.

What is the volume of the new solid?
What is the surface area of the new solid?

Has the new solid got 12 faces or 24? Justify your answer.

Can you draw a net for the new solid using ruler and compasses only?

Percentage Puzzle

You will need: scissors, glue

- Cut out the numbers at the bottom of this sheet.
- Place them on the sheet to make four true statements.
- Do not stick them down until you are sure that all four statements are true.

Consecutive Products

Consecutive numbers lie next to each other on the number line.

	1	1	1	1	1
	4	5	6	7	8
		Examples:			

6 and 7 are consecutive.
5,6 and 7 are consecutive. 4 and 6 are not consecutive.

The product of two numbers is found by multiplying them together
Example:
The product of 6 and 12 is 72 because $6 \times 12=72$

Example:

42 is the product of two consecutive numbers.

$$
6 \times 7=42 \quad 6 \quad 7
$$42

1. Copy the following and find the two missing consecutive numbers.
a)

d)

e)

f)
462

g) 306

h)

i)

j)

k) 3782

I)

2. Copy the following and find the three missing consecutive numbers.
a)

Matching Weights

You will need: glue, scissors

1. Cut out the weights at the bottom of this worksheet and match them to the objects.
2. Show each weight on the scales.

Sensible Answers

Do not use a calculator.

Problem:

18 people are going to Southwold by car.
Four people can fit in each car.
How many cars are needed?

Method:

$18 \div 4=4.5$
The answer to 18 divided by 4 is between 4 and 5 . If you gave the answer 4 only 16 people could go. 2 people would be left behind.

So the sensible answer is 5 cars.

The sensible answer depends upon the original problem.

Solve the problems below.
For each problem, show your method and make sure that your answer is sensible.

1. 169 students are going on a school trip to Margate. Each coach can carry 50 students.

How many coaches will be needed?

2. A football club has 49 members: A football team needs 11 players.

How many teams can the football club field?

3. A tin of paint covers 25 square metres.

How many tins of paint will you need to cover 1.16 square 'metres?

4. Milk is sold in crates of 12 identical bottles.

A wholesaler has 102 identical bottles.
How many crates can she make up?

5. Exercise books are sold in packets of 10 . Ms Kershaw wants to order exercise books for 67 students.

How many packets of books does Ms Kershaw need to order?

6. Jameela wants to record her favourite television programme.
Each episode lasts 40 minutes.
How many episodes can she record on a 3 hour tape.

- ロ

Decimal Places Match

Match each calculator answer to its three approximations.

Number Stories

1. Here are two other calculations.
8-5+2
$6+5-4$

Use the sentences below to make a number story for each calculation.
Write them down in your book.

2. Here are two more calculations. Use the sentences below to make a number story for each calculation. Write them down in your book.

$$
6 \times 2-5 \quad 10 \div 2-4
$$

3. Make up number stories for each of these calculations and show them to your teacher.

$$
8-3+7
$$

$$
4 \times 3+6
$$

Circle Cut

In the diagram below, the radius of each small semicircle (\mathbf{r}) is half the radius of the outer circle (\mathbf{R}).

Make one straight cut across the circle so that each of the two regions is exactly halved.

Use algebra to justify your answer.

Play Your Cards Right

A game for four players in two teams.
You will need a set of number cards (digits between 0 and 9) and the targets from worksheet 2401a.

The Rules

Shuffle the number cards.
Deal each team five number cards.
Place the targets face down in a pile.
Turn over the first target.
Use any three of the number cards to get as close to the target as possible.

The team who gets the closest scores one point.
Place the used number cards at the bottom of the pack and replace them with three new cards.

Turn over the next target and repeat the game.
The team with the highest score wins.

Targets for

Play Your Cards Right

Target!
Nearest even
number to 500
Target!
Largest odd number

```
Target!
    Nearest odd number
        to 400
```

Target!
Nearest number to 723

Target!

Smallest odd number

Target!
Largest number

Target!
Nearest number to 100

Target!
Largest even number

Target!
Nearest number to 250

Target!
Nearest number to 1000

Target!
Smallest even number

Target!
Smallest number

Equivalent Fractions Sort

1. Shade the fractions of the circles below.

2. Cut out all the fractions and arrange them in order of size.
3. Which of the fractions are equivalent? (equivalent fractions represent the same proportion).
4. Find 2 fractions which are equivalent to $\frac{3}{4}$.

Missing the Point

Example:

Sheila saw this addition and realised that one of the numbers being added had a decimal point either missing or in the wrong place.

$$
53.7+1.26=66.3 \quad x
$$

She rewrote the addition correctly.

$$
53.7+12.6=66.3
$$

Do not use a calculator.

In each of the calculations below, one and only one of the decimal points is either missing or in the wrong place.

A Rewrite these additions to make them correct.

1. $40.5+24.05=28.1$
2. $5.8+74=13.2$
3. $7+4=4.7$
4. $7.77+7.07=84.77$
5. $4.5+0.55=1$
6. $0.003+7=7.3$

B Rewrite these subtractions to make them correct.

1. $45-1.95=2.55$
2. $6.05-3.12=57.38$
3. $4.9-4.9=44.1$
4. $5-0.01=0.49$
5. $1.23-122.9=0.1$
6. $6-3.12=56.88$

List of abbreviations on 2001 SMILE Network

ANGLE	SMILE software 'Angle Estimation' available from SMILE Mathematics
COORD	SMILE software 'Co-ordinates' available from SMILE Mathematics
DfEE	SMILE software Ref: 0260/2000 available from DfEE
DIME	A variety of materials available from Tarquin
ENRICH	SMILE software 'Co-ordinates' available from SMILE Mathematics
GRAPH	SMILE software 'Graphing' available from SMILE Mathematics
INVEST	SMILE software 'Investigation' available from SMILE Mathematics
INVEST Pgxx	Page number from Student's Handbook 'Investigation' available from SMILE Mathematics
MA Poster	Poster available from Mathematics Association
MATH PUZ	SMILE software 'Mathematical Puzzles' available from SMILE Mathematics
MOVE	SMILE software 'Movement' available from SMILE Mathematics
MOVE Pgxx	Page number from Student's Handbook 'Movement' to be printed from the CD available from SMILE Mathematics
NUM	CD 'Numeracy' available from SMILE Mathematics
PROP/NO	CD 'Properties of Number' available from SMILE Mathematics
PROP/NO Pgxx	Page number from Student's Handbook 'Properties of Number' to be printed from the CD available from SMILE Mathematics
SENSE/NO	SMILE software 'Sense of Number' available from SMILE Mathematics
SENSENO Pgx	xPage number from Student's Handbook 'Sense of Number' to be printed from the CD available from SMILE Mathematics
TARQUIN Post	Poster available from Tarquin

List of Commercial Referenced activities in SMILE number order.
0581 Using a Mirror (DIME - Rellection Activities PP) 1340 Pattern and Notation (DIME - Pre-Algebra)
0778 Tangram Tree (MA Poster)

1341 Number Machines (DIME - Pre-Algebra PP)
0906 Tak Tiles A (DIME - TakTiles PP3)
0907 Tak Tiles B (DIME-TakTiles PP3)
0908 Tak Tiles C (DIME - TakTiles PP3)
0909 Tak Tiles D (DIME - TakTiles PP3)
1331 Equal Angles (DIME - The Rotagram PP)
1332 Rotations (DIME - The Rotagram PP)
1333 Directions (DIME - The Rotagram PP)
1334 Recognising Solids (DIME-3-D Sketching PP)
1335 Sketching Solids (DIME - 3-D Sketching PP)
1336 Turning and Toppling (DIME-3-D Sketching)
1337 Reflections (DIME-3-D Sketching PP)
1338 Wedges (DIME-3-D Sketching PP)
1339 Flags (DIME - Pre-Algebra PP)

1342 Mappings and Graphs (DIME - Pre-Algebra)
1343 Simple Mappings (DIME - Pre-Algebra PP)
1344 Further Mappings (DIME - Pre-Algebra PP)
1354 Euler Solids (MA Poster)
1482 Tricky Sum (MA Poster)
1604 Nim (SMILE software Mathematical Puzzles)
1605 Guess (SMILE software Sense of Number)
1606 GuessD (SMILE software Sense of Number)
1607 Elephant (SMILE soltware Co-ordinates)
1608 Reverse (SMILE software Mathematical Puzzles)
1609 Maze (SMILE sottware Movement)
1620 Bounce (DfEE)
1621 Rhino (SMILE software Co-ordinates)

1622 Vectmeet (SMILE software Movement)
1624 Snooker (SMILE sottware Angle Estimation)
1625 Box (SMILE sotware Sense of Number)
1626 Boat (SMILE sottware Mathematical Puzzles)
1641 Lines (SMILE software Co-ordinates),
1650 Take Part (Software - DIEE)
1651 Frog (SMILE sottware Mathematical Puzzles)
1652 Jugs (SMILE sottware Mathematical Puzzles)
1653 Master(SMILE sottware Mathematical Puzzles)
1654 Racegame (SMILE software Movement)
1666 Tower (SMILE sottware Sense ol Number)
1667 Pilot (SMILE software Moverment)
1691 Predict (SMILE sotware Mathematical Puzzles)
1702 Circle (SMILE software Investigations)
1708 Factor (SMILE sottware Properties or Number)
1714 Queens (SMILE Properties of Number Students' HBPg 35)
1715 Locate (SMILE software Co-ordinates)
1718 Line Symmetry A 1-4 (DIME - Line Symmetry Puzzles A PP5A)
1719 Line Symmetry A 5-10 (DIME-Line Symmetry Puzzles A PP5A)
1721 Angle 90° (SMILE software Angle Estimation)
1728 BoxD (Smile sotware Sense of Number)
1729 Minimax (SMILE sottware Sense of Number)
1730 Wall (SMILE software Sense of Number)
1731 Rose (SMILE sottware Investigations)
1732 3D Maze (SMILE software Movement)
1745 Identify (SMILE software Properties of Number)
1746 Define (SMILE software Properties of Number)
1747 Darts (SMILE sottware Numeracy)
1755 Hopslide (SMILE software Mathematical Puzzies)
1756 Tadpoles (SMILE software Mathematical Puzzles)
1767 AddsUpTo (SMILE software Numeracy)
1776 Spirals (SMILE software Investigations)
1777 Avoid each other (SMILE Investigations Students' HB Invest Pg 35)
1778 Jumping (SMILE software Mathematical Puzzles)
1779 Lineover (SMILE soltware Graphing)
1785 Invest. Queens (SMILE Movement Students' HB Pg 35)
1787 Angle 360° (SMILE software Angle Estimation)

1796 Plotter (SMILE sottware Graphing)
1798 Quilts (SMILE software Investigations)
1820 Parallels (SMILE sotware Graphing)
1833 Magic (SMILE software Numeracy)
1834 Tenners (SMILE sottware Numeracy)
1835 Magnify (SMILE sottware Sense of Number)
1836 3inaline (SMILE software Co-ordinates)
1840 PointsAndLines (SMILE software Graphing)
1841 Interlocking Squares (DIME - Shape
Recognition PP1)
1842 Shapes Jigsaw (DIME - Shape
Recognition PP2)
1851 Regions (SMILE sotware Graphing)
1852 Foxes and Chickens (SMILE sotware Graphing)
1853 Pinball (SMILE sotware investigations)
1855 Quadratic Mappings (DIME-PreAlgebra PP)
1866 Mirror Match (DIME - Rellection Activities PP)
1876 Fill the Shape (Dime - Build-up PP)
1877 Add a Cube or Two (DIME - Build-up PP)
1878 Two Blocks (DIME - Build-up PP)
1879 Build and Balance (DIME - Build-up PP)
1880 More than Two Blocks (DIME - Build-up PP)
1882 Wedges 1 (DIME - Build-up PP)
1883 Wedges 2 (DIME - Build-up PP)
1889 Regular Tilings 1 (DIME-Regular Tilings Project)

- Use A Triangles, B Convex Quadrilaterals, C Concave Quadrilaterals, E 2 Sizes of Squares.
- For each activity do questions 1-3.

1890 Regular Tilings 2 (DIME-Regular Tilings Project)

- Use F Polygons.
- Do questions 1-4.

1891 Regular Tilings 3 (DIME-Regular Tilings Project)

- Use D Pentagons.
- Do questions 1-3.

1892 Line Symmetry B1-3 (DIME-Line Symmetry Puzzles B PP5B)
1893 Line Symmetry B4-6 (DIME-Line Symmety Puzzles B PP5B)
1894 Line Symmetry B 7-10 (DIME-Line Symmety Puzzles B PP5B)
1896 Spatial Reasoning (DIME - Spatial Reasoning Puzzles PP7)

1903 Numbers (SMILE soltware Properties of Number)
1908 Pattern Pack A (DIME - Pattern Pack A PP6A)
1909 Pattern Pack B (DIME - Pattern Pack B PP6B)
1920 Pattern Spotting (SMILE Properties of Number Students' HB Pg 16)
1936 Many Grids (SMILE Properties of NumberStudents' HB Pg 28)
1950 Diagonal Multiples (Students' HB Properties of Number Pg 29)
1961 One Million (TARQUIN Poster)
1966 Curve Stitching (TARQUIN Poster)
1967 One Dice (DIME - Probability Pack A)
1968 Numbers Up (DIME - Probability Pack A)
1969 Two Dice (DIME - Probability Pack A)
1970 Five Beads (DIME - Probability Pack B)
1971 Seven Beads (DIME - Probability Pack B)
2008 Curves of Pursuit (TARQUIN Poster)
2009 Three Counters (DIME - Probability Pack A)
2010 Six Beads (DIME - Probability Pack B)
2011 Four Beads (DIME - Probability Pack B)
2012 Tessellation Poster (TARQUIN Poster)
2014 Probably Probable? (Students' HB Investigations Pg 43)
2073 Tricubes (DIME - Tricube Puzzies Project) - Worksheets A1, A2, A3, A4

2074 Building with Tricubes (DIME - Tricube Puzzles Project)

- Worksheets B2, B6, B10

2075 Tricube Plans (DIME - Tricube Puzzles Project) - Worksheets C1, C5, C6, C8

2076 Building on a Square (DIME - Tricube Puzzles Project)

- Worksheets D1, D5, D8, D10

2077 Making a $3 \times 3 \times 3$ Cube (DIME - Tricube Puzzles Project)
Worksheets E3, E7, E10
2086 Circles to Polygons (SMILE Investigations Students' HB Pg 10)
2094 Squares (SMILE Investigations Students' HB Pg 4)
2113 Mystery (SMILE 1783 Calculating: Page 3)
21142 Puzzles (SMILE 1783 Calculating: Page 5)
2115 Missing Digit (SMILE 1783 Calculating: Page 8)
2116 Operations (SMILE 1783 Calculating: Page 9)
2117 Rumour (SMILE 1783 Calculating: Page 10)
2118 Ticket Sales (SMILE 1783 Calculating: Page 11)

2119 Patterns (SMILE 1783 Calculating: Pages $12 \&$ 13)
2120 Productive (SMILE 1783 Calculating: Page 14)
2121 Hot and Cold (SMILE 1783 Calculating: Page 15)
2122 Target 200 (SMILE 1783 Calculating: Page 16)
2123 Missing Signs (SMILE 1783 Calculating: Page 17)
2124 Date of Birth (SMILE 1783 Calculating: Pg18/19)
2125 Escape (SMILE 1783 Calculating: Pages $20 \& 21$)
2126 Problems (SMILE 1783 Calculating: Pages 22 \& 23)
2194 Tossing Coins (SMILE Investigations Students' HB Pg $38 / 40$)
2202 Visiting Every Point (SMILE Investigations Students' HB Investi. Pg 8)
2284 BoxN (SMILE software Sense of Number)
2285 GuessN (SMILE software Sense of Number)
2286 Quadrants and Squares (DIME - Algebra through Geometry)

- Worksheets A3, A4

2287 Add and Subtract Squares and Quadrants (DIME - Algebra through Geometry) - Worksheets A5, A6

2288 Algebra Tak-Tiles on a Grid (DIMEAlgebra through Geometry)

- Worksheets B1, B2, B3, B4, B5, B6

2289 Algebra Tak-Tiles without a Grid (DIME

- Algebra through Geometry)
- Worksheets C1, C2, C4, C5, C6

2290 A New Unit of Area (DIME-Algebra through Geometry)

- Worksheets D1, D2, D3, D4, D5, D6

2291 Comparing Areas (DIME-Algebra through Geometry)

- Worksheets E1, E3, E4)

2326 Hanoi (SMILE software Mathematical Puzzles)
2327 Hats (SMILE software Mathematical Puzzles)
2373 Queens (SMILE software Movement)
2377 TenSprint (SMILE soltware Numeracy)
2378 Matching Fractions (SMILE software Numeracy)
2379 Ordering Fractions (SMILE software Numeracy)
2380 NumberLines (SMILE software Numeracy)
2381 NumberLinesD (SMILE software Numeracy)
2393 Equivalent Pair (SMiLE software Enriching Number)
2394 Make that Number (SMILE software Enrich No)
2395 Maximum Remainder (SMILE sotware EnrichNo)
2396 FindTheLine (SMILE software Graphing)
2397 Guess Inequality (SMILE software Graphing)

Additional resources available from SMILE Mathematics

SMILE Mathematics Worksheet Pack

There are 270 photocopiable worksheets. The worksheets are not included in a SMILE Full Class Set or a SMILE Single Copy Set, but are referenced on the SMILE 2001 Network.

Whole class lessons

- Bridging Units
- Nice Ideas in One Place V. 125 whole class activities, suitable for KS3.
- Nice Ideas in One Place V. 220 whole class activities, suitable for KS3.
- Reasoning
- Revision through Groupwork
- Whole Class Maths Projects

2 units suitable for Year 7.

27 whole class activities, suitable for KS3.
9 topics allowing for differentiation.
8 whole class projects, suitable for KS3/4.

Assessment

- Assessment Pack Assessment activities and tests.

Available from DfEE Publications www.dfee.gov.uk
Tel: 08450622260
MA Posters Available from Maths Association 259 London Road Leicester
LE2 3BE
Tel: 01162703877
SMILE software Available from SMILE Mathematics 108a Lancaster Road
London
W11 1QS
Tel: $020 \quad 75984841$
TARQUIN Available from Tarquin Publications Stradbroke, Diss Norfolk
IP21 5JB
Tel: 01379384218

Isaac Newton Centre 108A Lancaster Road London W11 1QS

ACTIVITY LIST Smile 0001-2403

Abbreviations used, in alphabetical order.

Abbr	AT	Flow
3-D	AT3	3-D
A\&P	AT3	Area and Perimeter
Add	AT2	Addition
AIDa	AT4	Analysing and Interpreting Data
Alg	AT2	Algebraic Structure
Ang	AT3	Angle
APr	AT3	Angle Properties
CDa	AT4	Collecting Data
CiM	AT3	Circle Measurement
Coo	AT3	Coordinates
CTr	AT3	Combined Transformations
DDa	AT4	Displaying Data
Dec	AT2	Decimals
Div	AT2	Division
DNo	AT2	Directed Number
Dra	AT3	Drawing
Equ	AT2	Equations
Fra	AT2	Fractions
Gra	AT2	Graphs
L\&S	AT4	Logic and Sets
Map	AT2	Mappings
Mea	AT3	Measurement
Mix	AT2	Mixed
Mul	AT2	Multiplication
Or/R	AT2	Ordering and Rounding
O.R.		Other Resources
P\&R	AT2	Powers and Roots
PaG	AT2	Patterns and Generalisations
Per	AT2	Percentages
PNo	AT2	Properties of Number
Pro	AT4	Probability
PSh	AT3	Properties of Shape
PV/N	AT2	Place Value/Number Systems
Rat	AT2	Ratio
Ref	AT3	Reflection
ReP.		Resource Programs
Rot	AT3	Rotation
S/En	AT3	Similarity/Enlargement
SAV	AT3	Surface AreaVolume
Seq	AT2	Sequences
Sha	AT3	Shape
Sub	AT2	Subtraction
Top	AT3	Topology
TrN	AT3	Translation/Vectors
Trig	AT3	Trigonometry
UGr	AT2	Using Graphs
Other Abbreviations (lower case) Any activity with abbreviations in lower case indicates that the activity is a SMILE activity.		
w/s		denotes worksheet
(box)		SMILE activities that are not usually stored with the Workcards or Worksheets. Written in lower case letters in brackets. e.g. (poster)
(Calc		Activities which can be found in SMILE 1783 Calculating Booklet with page number of activity.
Other Abbreviations (UPPER CASE) Any activity with abbreviations in upper case indicates that the activity is a Commercial Reference and not included when you purchase SMILE materials.		
(ANGLE)		SMILE software 'Angle Estimation'
(COORD)		SMILE software 'Coordinates'
(DIEE)		Software from DfEE
(DIME)		Activities from Tarquin Publications
(ENRICH)		SMILE software 'Enriching Number'
(GRAPH)		SMILE software 'Graphing'
(INVEST)		SMILE software 'Investigations'
(MA Poster)		Poster from The Mathematics Association
(MATH PUZ)		SMILE software 'Mathematical Puzzles'
(MOVE)		SMILE software 'Movement'
(NUM)		SMILE software 'Numeracy'
(PROP/NO)		SMILE software 'Properties of Number'
(PROP	NO Pg	gx) Page number from the Student's Handbook which can be downloaded from the CD 'Properties of Number'
(SENS	(NO)	SMILE software 'Sense of Number'

Please contact SMILE Mathematics (020 7598 4841) for a complete list of the commercially referenced materials on the SMILE Network.

0001-0299
0005 Tangram 1

0007	Tangram 3	AT3	Sha	5
0008	Prisms \& Pyramids	AT3	Dra	4
0022	Area 1	AT3	A\&P	3
0023	Area 2	AT3	A\&P	4
0024	Area 3	AT3	A\&P	3
0025	Area 4	AT3	A\&P	4
0027	Number Squares w/s	AT2	Equ	1/2
0028	Number Squares 2 w/s	AT2	Equ	1/2
0030	Number Squares $4 \mathrm{w} / \mathrm{s}$	AT2	Add	3
0031	Find the Number $1 \mathrm{w} / \mathrm{s}$	AT2	Equ	1/2
0033	Find the Number $3 \mathrm{w} / \mathrm{s}$	AT2	Equ	3
0034	Find the Number $4 \mathrm{w} / \mathrm{s}$	AT2	Equ	4
0035	Squares and Triangles	AT3	Sha	3
0039	About Angles	AT3	APr	5
0040	Equilateral Triangle	AT3	Sha	4
0046	Domino	AT3	S/En	5
0048	Tetromino	AT3	CTr	4
0050	Dissection 1	AT3	Sha	3
0051	Dissection 2	AT3	Sha	4
0052	Dissection 3	AT3	Sha	4
0053	Dissection 4	AT3	Sha	4
0054	Dissection 5	AT3	Sha	5
0057	Fractions $3 \mathrm{w} / \mathrm{s}$	AT2	Fra	4
0058	Fractions $4 \mathrm{w} / \mathrm{s}$	AT2	Fra	4
0066	Napier's Rods	AT2	Mul	4
0068	Accurate Measuring	AT3	Mea	4
0069	Cardioid w/s	AT2	Seq	4
0070	Isometric Drawing	AT3	3-D	4
0071	Envelopes	AT3	Dra	3
0072	Angles of a Quadrilateral	AT3	APr	5
0073	Time/Distance Graph	AT2	UGr	5
0074	Sum \& Product w/s	AT2	Mix	3
0075	Networks	AT3	Top	5
0085	Calculator Problems	AT2	Add	3
0090	More Calculator Problems	AT2	Mul	5
0092	Harder Calculator Problems	AT2	Mix	5
0098	Plaited Cube w/s	AT3	3-D	6
0099	Sum \& Product Again w/s	AT2	Mix	3

0104	Number Puzzle 1	AT2	Add	4
0105	7 Piece Tangram	AT3	Sha	5
0114	Nines w/s	AT2	PaG	3
0115	Columns	AT2	PaG	1/2
0119	Area and Perimeter	AT3	A\&P	5
0120	Chocolate Areas	AT3	A\&P	6
0121	100 Square Patterns w/s	AT2	PaG	1/2
0123	Counter Puzzle	AT4	L\&S	4
0131	Matchstick Puzzles	AT3	PSh	4
0133	Out of Line	AT3	L\&S	4
0142	Volumes of cubes	AT3	SAN	6
0143	Volumes 2	AT3	SAN	6
0144	All out of Line	AT3	Tr N	6
0145	Tetraflexagon	AT3	3-D	6
0151	More 100 Square Patterns	AT2	PaG	1/2
0153	Decimal Calculations	AT2	Dec	7
0155	Calculator Trial and Error	AT2	Mix	7
0159	Angles of a Triangle	AT3	APr	4
0161	The Three Coin Problem	AT4	Pro	6
0162	2, 3, 4, 5	AT2	Mix	7
0164	Patterns with 11 and 13	AT2	Div	4
0165	Cyclic Quadrilateral	AT3	APr	7
0166	Area of a Triangle	AT3	A\&P	5
0167	x for Breakfast	AT2	Map	5
0168	Right Angled Triangles w/s	AT3	A\&P	5
0169	Half a Rectangle	AT3	A\&P	5
0170	Hex	AT4	L\&S	6
0171	TV Drinks	AT2	Map	3
0172	A Match for Anyone	AT2	Map	4
0173	Mapping Machines	AT2	Map	4

0174	Gelosia	AT2	Mul	5
0177	Shearing a Triangle	AT3	A\&P	6
0178	Rectangles w/s	AT3	A\&P	3
0179	Four 4's	AT2	Mix	8
0181	Alf Mike or Leena	AT2	Map	5
0182	Mappings to Graphs	AT2	Gra	6
0183	Graphs to Mappings	AT2	Gra	6
0184	Number Puzzle w/s	AT2	Equ	6
0185	Which is Larger?	AT3	A\&P	4
0187	x for Tea	AT2	Map	6
0188	Checking Pythagoras	AT3	Trig	6
0189	Looking for Right Angles	AT3	Trig	7
0190	Using Pythagoras	AT3	Trig	7
0191	Pythagoras Problems	AT3	Trig	7

0211	Perpendicular Bisectors	AT3	Dra	
0212	Bisecting an Angle	AT3	Dra	
0213	The Circumcircle	AT3	Dra	6
0214	Using a Ruler	AT3	Mea	1/2
0215	Drawing the Line	AT2	Gra	6
0220	Triangle Numbers 1	AT2	P\&R	
0221	Triangle Numbers 2	AT2	PNo	5
0224	Area of a Parallelogram	AT3	A\&P	6
0226	Shearing Parallelograms	AT3	A\&P	6
0227	Parallelogram Probiems	AT3	A\&P	
0228	From Parallelogram to Rectangle	AT3	A\&P	6
0230	Square Pegs in Round Holes	AT2	P\&R	5
0232	Inscribed Circle	AT3	Dra	6
0233	Rectangle Patterns	AT2	PNo	3
0235	Finding Angles of a Triangle	AT3	APr	5
0236	Triangle Problems	AT3	A\&P	6
0240	Odds and Evens Tables	AT2	PNo	5
0241	A Secret Code	AT2	Map	1/2
0242	Cracking the Code w/s	AT2	Map	3
0244	More Sorting	AT4	L\&S	1/2
0245	Venn Diagrams	AT4	L\&S	3
0248	Making Ten	AT2	Add	1/2
0249	How Many Ways?	AT2	Add	1/2
0250	Less Than More Than	AT2	Or/R	3
0251	Mirror Symmetry w/s	AT3	Ref	3
0255	Points and their Images	AT3	Ref	6
0257	Squidge	AT2	Seq	5
0258	Squidgeree	AT2	Seq	5
0259	Shading Fractions w/s	AT2	Fra	3
0261	Co-ordinates 1	AT3	Coo	3
0262	Co-ordinates 2	AT3	Coo	4
0263	Co-ordinates 3	AT3	Coo	4
0264	Cartoon Co-ordinates w/s	AT3	Coo	4
0265	Odd and Even	AT2	PNo	1/2
0267	Angles of a Polygon	AT3	APr	5
0268	Exterior Angles of Polygons	AT3	APr	5
0269	Finding Exterior Angles	AT3	APr	6
0272	Vehicle Survey w/s	AT4	CDa	3
0273	How Much Longer?	AT3	Mea	4
0281	Angles: The Compass	AT3	Rot	3
0284	Angles from Tessellations	AT3	APr	6
0286	Right-angles	AT3	Ang	3
0288	Rolling Two Dice w/s	AT4	Pro	4
0290	Experiments	AT4	Pro	4
0291	Which Set?	AT4	L\&S	4
0292	Doubling Patterns w/s	AT2	PaG	4
0294	Measuring Lengths	AT3	Mea	3
0295	Nets of a Cube	AT3	Dra	4
0297	More Rectangle Numbers	AT2	PNo	3
0298	Square Numbers	AT2	P\&R	4
0299	Three Squared	AT2	P\&R	5

0307	Factors	AT2	PNo	4
0308	Prime Numbers	AT2	PNo	5
0310	Common Factors	AT2	PNo	5
0311	Factor Finder	AT2	PNo	5
0313	Spots in Sequences	AT2	Seq	3
0314	Dots in Sequences	AT2	Seq	5
0315	Staircases	AT2	Seq	6
0316	Counting On w/s	AT2	Seq	3
0317	Sequences of Numbers	AT2	Seq	4
0320	Turning Patterns	AT3	Rot	3
0322	Cutting up Rectangles	AT3	Sha	$1 / 2$
0323	Metre and Centimetre	AT3	Mea	3
0324	Rotations	AT3	Rot	3
0326	Tessellations of Quadrilaterals	AT3	Sha	6
0327	Centres of Rotation w/s	AT3	Rot	5
0330	Multiple Patterns	AT2	PNo	5
0331	Prime Factors	AT2	PNo	6
0333	Equivalent Fractions	AT2	Fra	4
0334	Egyptian Numbers	AT2	PV/N	3
0338	Summing the Odds	AT2	PNo	5
0339	Vector Messages	AT3	TrN	4
0340	Is it Rigid?	AT3	PSh	6
0341	Nodes w/s	AT3	Top	5
0342	About Nodes	AT3	Top	7
0344	Counter Hopping Puzzle	AT2	PaG	7
0346	Sequences in Squares w/s	AT2	Seq	4
0348	Tangram Teasers	AT3	Sha	5
0349	Tetrahedron Nets	AT3	Dra	4
0352	Table Squares w/s	AT2	Seq	4
0353	Bowling Tom	AT2	Add	1/2
0354	Tom the Bowling Champ w/s	AT2	Add	3
0355	Bowling Tom's Problem	AT2	Add	3
0359	How Many Colours? w/s	AT3	Top	4
0362	No Brakes Bruce	AT2	UGr	6
0364	Using a Triangle	AT3	PSh	6
0365	A Million	AT2	Mix	5
0366	2-Piece Square	AT3	PSh	4
0367	Fraction Wall w/s	AT2	Fra	5
0376	A Hundred	AT2	PV/N	4
0377	VectorSea	AT3	TrN	4
0381	Cuboids from Matchboxes	AT3	SAV	6
0383	Building Shapes w/s	AT2	Seq	5
0384	Changing Grids w/s	AT3	Coo	4
0386	Think of a Number	AT2	Map	4
0388	Power	AT2	P\&R	6
0390	Surfaces w/s	AT4	L\&S	3
0392	Circumference	AT3	Сім	5
0394	Concentric Circles	AT3	Dra	4
0396	Hexagons w/s	AT2	Fra	4
0397	Operations	AT2	Alg	8
0398	$4+3 \times 2$	AT2	Mix	5
0399	Cubes	AT3	SAV	8
0400	Folding Symmetry	AT3	Ref	1/2
0402	Adding Fractions	AT2	Fra	6
0404	Solids w/s	AT3	3-D	3
0406	Two Folds	AT3	Ref	1/2
0411	Hexagon Dissection	AT3	Sha	5
0414	Bi-Fractions	AT2	PV/N	EP
0423	Clock Arithmetic	AT2	PV/N	3
0424	How Many Routes? w/s	AT3	Top	4
0426	Traversable?	AT3	Top	6
0428	One Difference Logichains	AT4	L8S	3
0429	Squaring	AT2	P\&R	5
0430	Parallel Lines	AT2	Gra	6

0432	Moving Pictures	AT3	CTr	5
0433	Acut/Obtuse	AT3	APr	6
0437	Chess	AT2	PaG	5
0439	Rectangle Diagonal	AT2	PaG	7
0443	Who Won?	AT2	Fra	6
0448	Favourite Colours w/s	AT4	DDa	1/2
0450	Trick or Treat	AT2	Seq	6
0452	Inside or Outside?	АТЗ	Top	5
0453	What Can I Wear?	AT4	Pro	5
0454	Post Box	AT3	Trig	EP
0455	Midpoints	AT3	PSh	5
0456	Midpoint Sequences w/s	AT3	Dra	3
0457	Number Pictures	AT2	Add	1/2
0458	Adding Numbers	AT2	Add	1/2
0459	Adding Shapes	AT2	Add	1/2
0460	Cary on Adding	AT2	Add	3
0461	Venus Clock	AT2	Alg	4
0463	Paper Power	AT2	P\&R	7
0464	Subtracting	AT2	Sub	1/2
0465	Subtraction	AT2	Sub	3
0467	Subtract	AT2	Sub	1/2
0470	Nephroid w/s	AT2	Seq	5
0471	Border Patterns	AT3	TrN	1/2
0472	Sort the Cards	AT4	L\&S	6
0474	Triominoes	AT2	PNo	4
0475	All Change	AT4	L\&S	4
0476	Mapping w/s	AT2	Map	5
0477	Shunting	AT4	L\&S	8
0478	Patterns with Squares	AT3	CTr	1/2
0481	Where's that Town?	AT3	Coo	5
0483	Star Puzzle	AT2	PaG	5
0484	Octahedron Nets	AT3	Dra	5
0485	Pamphlets	AT2	Equ	8
0489	Underground	AT2	Mix	4
0492	The Inseparables	AT3	Top	7
0493	Sam Shape w/s	AT3	PSh	1/2
0494	All Co-ordinates	AT3	Coo	5
0495	Routey	AT3	Top	5
0496	Junior Contig	AT2	Mix	4
0510	Radar w/s	AT3	Ang	5
0516	Adding Directed Numbers	AT2	DNo	6
0517	Subtracting Directed Numbers	AT2	DNo	7
0518	(Do it first)	AT2	Mix	5
0528	Multiplying	AT2	Mul	4
0549	Marbles	AT2	DNo	5
0550	Adding Shifts w/s	AT2	DNo	5
0557	A Special Number	AT2	PV/N	EP
0560	Symmetrical Cross Cut	AT3	Ref	6
0563	Digit Sum	AT2	Seq	8
0574	Line of Best Fil	AT4	DDa	7
0577	Reflect w/s	AT3	Ref	6
0579	Two Loops	AT4	L\&S	3
0581	Using a Mirror (DIME)	AT3	Ret	6
0585	Three Loops	AT4	L8S	4
0590	Less Marks are Best!	AT3	Mea	7
0591	Counter Placing	AT4	L\&S	6
0592	Powerful Rules	AT2	P\&R	7
0595	Best Fitting Peg	AT3	SAV	EP
0597	Sunita's Day	AT3	Mea	3
0600	In your Mind	AT4	L8S	7
0603	Numbering the Pages	AT2	Pag	6
0614	Powers of Ten w/s	AT2	P\&R	7

0616	The Unknown Square	AT2	Alg	7
0617	Looking Around w/s	AT3	$3-\mathrm{D}$	$1 / 2$
0629	Time Tiles	AT3	Mea	4
063	Sidings	AT4	Pro	6
0674	A Hungry Death?	AT4	L\&S	5
0675	Cube Cuts	AT3	CTr	7
		AT4	L\&S	5
0677	Logic Maps	AT2	Fra	6
0683	Fraction Sort	AT4	Pro	7
0684	Forty Towers			
		AT2	Equ	6
0689	Random Code	AT2	Equ	5
0691	And now Swahili	AT4	Pro	5
0694	Which Switches?	AT3	CTr	4
0695	Locate the Error	AT3	Equ	6
0696	Number Codex	AT3	PSh	5

0705	Cross Puzzles w/s	AT2	Mix	3
0709	Reflection	AT3	Ref	5
0713	Jumping Jack w/s	AT2	Seq	1/2
0719	Cuboid Nets	AT3	Dra	6
0720	Nets of Pyramids	AT3	Dra	7
0721	Squares Tangram	AT3	Sha	5
0722	Prove It	AT2	Alg	EP
0725	Race Track w/s	AT3	TrN	6
0727	Who's Who?	AT4	L\&S	5
0730	Rotation w/s	AT3	Rot	5
0731	Regular Polygons	AT3	APr	8
0732	Ruler, Pencil, Compass	AT3	Dra	5
0734	Start with a^{2}	AT2	Alg	8
0735	Knots w/s	AT2	Mul	3
0736	Solving Equations	AT2	Equ	7
0737	What Chance?	AT4	Pro	6
0738	Family of Quadrilaterals	AT3	PSh	8
0740	Solve it	AT2	Equ	6
0741	The 38th Triangle Number	AT2	Alg	EP
0743	Solving by Graphs	AT2	Gra	7
0744	Equations and Graphs	AT2	Gra	7
0745	Inverses	AT2	Map	7
0746	Pascal's Triangle	AT4	Pro	7
0748	The Times Crossword	AT2	PNo	7
0749	Three Numbers	AT2	Mix	5
0750	Monopoly	AT4	Pro	6
0752	Repeating Digits	AT2	Div	6
0755	Rectangles to Regions	AT2	Gra	8
0756	Points of Intersection	AT2	Equ	EP
0757	Centigrade and Fahrenheit	AT2	Equ	7
0758	Odd One Out	AT2	Div	5
0760	Quickly to Zero	AT2	Div	6
0761	Orbits	AT3	CiM	7
0772	Angle Estimation	AT3	Ang	5
0775	Measuring Angles	AT3	Ang	4
0776	Drawing Angles	AT3	Ang	4
0777	Satelite Signals w/s	AT3	Ang	5
0778	Tangrams (MA poster)	AT3	Sha	5
0780	Long Mult. Revision	AT2	Mul	5
0781	The Inverse	AT2	Map	5
0782	Number Pattern Proof	AT2	PaG	EP
0783	Cubes from Triangles	AT2	PaG	7
0784	142857 Times Table	AT2	PaG	6
0788	Free Hand Angles	AT3	Ang	5
0789	Gradient	AT2	Gra	8
0791	A Millionaire	AT2	Rat	7
0792	Wage Bargaining	AT2	Per	5
0793	Approximation and π	AT3	CiM	EP
0794	The Trapezium	AT3	A\&P	7
0796	Darts Probability	AT3	CiM	EP
0797	Matrices and Transiormations	AT3	CTr	8

0800	Polygons: Interior Angles	AT3	APr	6	1013	Vector Magnitudes	AT3	TrN	8
0804	Inflation	AT2	Per	8	1028	Isometries	AT3	CTr	EP
0805	Average Pack of Workcards	AT4	AIDa	7					
0806	Trapezium to Parallelogram	AT3	A\&P	7					
					1081	Puzzles	AT2	Equ	5
0808	Code Breaking	AT4	AIDa	5					
0809	Fold It	AT3	APr	5	1094	Volume of Prisms	AT3	SAN	7
					1095	Percentages w/s	AT2	Per	5
0812	Irregular Areas	AT3	A\&P	8	1096	Marks to Percentages w/s	AT2	Per	6
0813	Sectors of Circles	AT3	Сім	EP	1097	Fractions to Percentages	AT2	Per	6
0817	Straight Line Graphs	AT2	Gra	7					
0818	Differences Between Squares	AT2	Alg	7					
0819	Prove Your Identity	AT2	Alg	EP					
0820	Equations from Squares	AT2	Alg	EP	1101	Pie Charts	AT4	DDa	6
0824	Golden Rectangle	AT2	Rat	8	1112	Rotation	AT3	Rot	6
0827	Clover Leaf	AT3	Сім	EP	1115	Graphs	AT4	UGr	5
0830	Re-Grouping	AT2	Alg	6	1123	Translation	AT3	TrN	6
0831	Primes and Proof	AT2	PNo	EP					
0832	Short Division	AT2	Div	3	1127	Time-Distance Graphs	AT2	UGr	7
0833	Short Division-Carrying	AT2	Div	4					
0834	Dividing Strips	AT2	Div	3	1130	Journeys	AT3	Ang	7
0837	Inverse Mappings	AT2	Map	7	1132	What's the Probability?	AT4	Pro	5
0838	Scale Factor	AT3	S/En	6					
0839	Rotate this way w/s	АТЗ	Rot	6	1136	Solving Equations	AT2	Equ	7
					1137	Solving Harder Equations	AT2	Equ	8
0843	Very Large Numbers	AT2	P\&R	8					
0844	Very Small Numbers	AT2	P\&R	8	1156	Transformations	AT3	CTr	8
0845	Negative Scale Factor	AT3	S/En	8					
					1170	Compass Constructions	AT3	Dra	6
0849	Anywhere on the Number Line w/s	AT2	Alg	6					
0850	Multiplication Problem?	AT2	Mul	5	1177	Vectors	AT3	TrN	EP
0851	Tile Patterns	AT3	Sha	1/2	1178	More Vectors	AT3	TrN	EP
0852	Colouring Triangles	AT4	Pro	1/2	1179	Column Vectors	AT3	TrN	EP
0853	Grids	AT3	Coo	4					
0854	Perimeter	AT3	A\&P	3					
0855	How Long?	АТ3	Mea	3					
0857	It's Raining	AT4	AIDa	$1 / 2$	1202	Significant Figures	AT2	Or/R	7
0859	Triangle Pairs	AT3	PSh	3	1208	Percentage Sales	AT2	Per	7
0860	The Same Area	AT3	A\&P	4					
0861	Triangle Spirals	AT2	Seq	4	1233	Frequency Graphs	AT4	AlDa	6
0862	Square Spirals	AT2	Seq	3					
0863	Deal the Cards	AT2	Div	3	1257	Volume of Cuboids	AT3	SAN	7
0864	People in Villages	AT4	DDa	3	1258	The Biggest Vase	AT3	SAV	8
					1259	Lengths of Similar Objects	AT3	S/En	8
0866	Sharing Counters	AT2	Div	3					
0867	Dividing Counters	AT2	Div	3	1261	Similar Solids	AT3	S/En	EP
0868	Evens w/s	AT2	PNo	1/2					
0869	Puzzle w/s	AT2	Mix	1/2	1267	Cum. Freq. from Grouped Data	AT4	AlDa	8
0870	Find the Stranger	AT4	L\&S	4					
					1269	Probability	AT4	Pro	7
0872	How Heavy?	AT3	Mea	3					
					1272	Comb Probs from Tree Diagrams	AT4	Pro	EP
0876	Identities	AT2	Alg	7					
0877	Angle 4 Review	AT3	APr	6	1275	Vol and Surface Area of Cylinders	AT3	SAV	7
0881	24 Squares w/s	AT2	Div	3	1278	Multiplying Directed Numbers.	AT2	DNo	7
0882	Lies, Damned Lies \& Statistics	AT4	AlDa	EP	1279	Dividing Directed Numbers	AT2	DNo	7
0884	Positive or Negative?	AT2	DNo	6	1281	Using Gradients	AT2	UGr	EP
0885	Number Noughts \& Crosses	AT2	Add	3					
					1287	Equilateral Construction	AT3	Dra	5
0889	Old Oak	AT2	UGr	4	1292	Sampling Shoes	AT4	CDa	5
0894	Force Meet	AT3	TrN	8					
0895	Jumps w/s	AT2	Mul	3	1294	Cooking Numbers	AT2	Rat	5
0896	How Thick?	AT3	Mea	6	1295	Second-hand Cars	AT4	DDa	6
089	Statistics 3 Review	AT4	AlDa	5					
					1299	Tangram Arrows w/s	AT3	Sha	4
0899	Time Bingo	AT3	Mea	$1 / 2$					
0900	24 Hour Bingo	AT3	Mea	3	1300	Measuring Windows	AT2	Dec	5
					1301	Three in a Line	AT4	L\&S	4
0903	Millions	AT2	Mix	6	1302	Logi Puzzle	AT4	L\&S	6
0904	Carry on Subtracting	AT2	Sub	3					
0905	Domino Puzzle	AT4	L\&S	7	1304	An Honourable Problem	AT4	L8S	4
0906	Tak Tiles A (DIME)	AT3	Sha	1/2	1305	Factorials!	AT2	Mix	EP
0907	Tak Tiles B (DIME)	AT3	Sha	1/2	1306	Decimal Estimation	AT2	Div	5
0908	Tak Tiles C (DIME)	AT3	Sha	1/2	1307	Sections	AT2	PaG	5
090	Tak Tiles D (DIME)	AT3	Sha	3	1308	Problems	AT2	Equ	8
					1309	More Vector Messages w/s	AT3	TrN	5
0982	Letters for Lengths	AT2	Equ	7					
					1312	Matchstick Sequences	AT2	Seq	3
					1313	Match Patterns	AT2	Seq	6
					1315	International Paper Sizes	AT2	Rat	7
100	Cumulative Frequency and Q'tiles	AT4	AlDa	8	1316	Halving	AT2	Or/R	5
					1317	Mult \& Div by 10,100 \& $1000 \mathrm{w} / \mathrm{s}$	AT2	Dec	5
101	Dividing in a Given Ratio	AT3	TrN	EP					
					1319	Consecutives	AT2	PNo	7

1432-1799

1432	Triangle Patterns	AT2	Seq	6
1433	Base -2	AT2	PV/N	EP
1434	Bearings and Scale Drawing	AT3	Ang	6
1435	Back Bearings	AT3	Ang	7
1436	Block Problems	AT3	SAN	4
1437	Four Consecutive Numbers	AT2	Alg	EP
1438	Patterns in Pascal's Triangle	AT2	PaG	7
1439	Geometric Progressions	AT2	PaG	EP
1454	ISBN's and Errors	AT2	Div	6
1456	Matrices for Rotations	AT3	Rot	EP
1457	Combining Rotations	AT3	Rot	EP
1458	Reflection Matrices Investigation	AT3	Ref	EP
1459	Matrices for Shears Investigation	AT3	CTr	EP
1460	Diophantine Equations	AT2	Equ	EP
1461	Figures for Words	AT2	PV/N	4
1462	Missing Keys	AT2	Mix	4
1463	Using brackets w/s	AT2	Mix	6
1482	Tricky Sum (MA Poster)	AT2	PaG	6
1484	Decimal Patterns	AT2	Dec	5
1485	Limits	AT2	Seq	EP
1486	Threes and Sevens	AT2	PaG	8
1487	Thinking in Three Dimensions	AT3	Trig	EP
1488	Angles between Planes	AT3	Trig	EP
1500	Subject of a Formula	AT2	Alg	EP
1501	Changing the Subject	AT2	Alg	EP
1504	Areas under Graphs	AT2	UGr	EP
1511	Defining Regions	AT2	Gra	8
1517	Trig Problems	AT3	Trig	EP
1520	Differences Game	AT2	Sub	1/2
1522	Eight Cubes	AT3	3-D	1/2
1523	A Red Cube	AT3	3-D	4
1524	4 Cube Solids	AT3	3-D	5
1525	Economical Weaving w/s	AT3	Top	4
1528	Fraction Wall 2	AT2	Fra	6
1533	Proportion	AT2	Rat	EP
1537	Sim Equations \& Inequalities	AT2	Gra	8
1538	Solving Simultaneous Equations	AT2	Equ	7
1540	Is There a Solution?	AT2	Equ	7
1541	Cones	AT3	SAN	EP
1543	Composite Functions	AT2	Map	EP
1555	Mystic Rose w/s	AT2	PaG	5
1556	19 Piece Jigsaw	AT2	PV/N	1/2
1557	Spirals w/s	AT3	Dra	3
1559	Areas of Similar Shapes	AT3	S/En	7
1560	Similarity Problems	AT3	S/En	8
1561	Combining Transformations	AT3	CTr	7
1562	Combined Reflections	AT3	Ref	8
1565	Symmetry w/s	AT3	Ref	4
1566	Finding Square Roots	AT2	P\&R	5
1568	Velocity from Dist-Time Graphs	AT2	UGr	EP
1569	Distance, Velocity \& Acceleration	AT2	UGr	EP
1570	Pounds and Pence w/s	AT2	Dec	5
1572	50\% is Half Marks	AT2	Per	5
1589	Square Roots Investigation	AT2	P\&R	7
1591	Domino Sums	AT2	Add	5
1592	Two Cuts Investigation w/s	AT3	PSh	4

1604	Nim (MATH PUZ)	AT2	PV/N	8	1700	Fitting	AT3	Sha	3
1605	Guess (SENSENO)	AT2	Or/R	1/2	1701	Posthalf (poster)	O.R.		
1606	Guess D (SENSE/NO)	AT2	Or/R	5	1702	Circle (INVEST)	ReP.		
1607	Elephant (COORD)	АТз	Coo	6	1703	Find the Uncle w/s	AT4	L\&S	3
1608	Reverse (MATH PUZ)	AT2	PaG	5	1704	Combined Probability	AT4	Pro	8
1609	Maze (MOVE)	AT3	CTr	1/2					
					1706	Think	AT4	L8S	7
1613	Calculating Kitty	AT2	Seq	5	1707	Graph Matching	AT2	Gra	8
1614	Probability Kitty	AT4	Pro	7	1708	Factor (PROP/NO)	AT2	PNo	6
1615	Logical Kitty	AT4	L\&S	5	1709	Ratio Problems	AT2	Rat	6
1618	Number Names	AT2	PNo	6	1710	Pencils Missing Digits w/s	AT2	Rat	4
					1712	Four Signs w/s	AT2	Mix	7
1620	Bounce (DfEE)	AT2	PaG	6	1713	Sub-zero	AT2	Sub	4
1621	Rhino (COORD)	Атз	Coo	4	1714	Queens (MOVE Pg 33)	AT3	Tr N	6
1622	Vectmeet (MOVE)	Ат3	TrN	8	1715	Locate (COORD)	AT3	Coo	6
1624	Snooker(ANGLE)	Атз	Ang	5	1716	Unibond Mixtures	AT2	Rat	7
1625	Box (SENSE/NO)	AT2	PV/N	1/2	1717	Add-a-Square w/s	AT3	Ref	5
1626	Boat (MATH PUZ)	AT4	L\&S	5	1718	Line Symmetry A 1-4 (DIME)	AT3	Ref	5
1627	Self Portrait w / s	AT4	L\&S	4	1719	Line Symmetry A 5-10 (DIME)	AT3	Ref	6
1628	Eight Squares	AT3	A\&P	3	1720	Centicube Surprise	AT3	SAV	5
1629	Pentagons w/s	AT3	Dra	4	1721	Angle 90ANGLE)	AT3	Ang	4
1630	Along the Line	AT2	Mix	4	1722	How Many Cubes?	AT3	SAV	2
1631	Target 100	AT2	Dec	6	1723	Getting Closer	AT2	Div	6
1632	Marked Buttons	AT2	Add	4	1724	Digit Division	AT2	Dec	6
					1725	Closest Product	AT2	Mul	6
1634	Colouring the Dots	AT3	Top	4	1726	Dividing Pairs	AT2	Div	6
1635	The Key to Success w/s	AT2	Mix	3	1727	Point Circles	AT2	PNo	5
1636	Calculator Flags w/s	AT2	Mix	3	1728	BoxD (SENSE/NO)	AT2	Dec	5
1637	Squares and Other Powers	AT2	P\&R	EP	1729	Minimax(SENSENO \& DfEE)	AT2	PV/N	5
1638	Tri-umph	AT2	Div	6	1730	Wall (SENSE/NO)	AT2	Fra	4
1639	Quarto	AT2	Dec	7	1731	Rose (INVEST)	AT2	PaG	6
					1732	3-D Maze (MOVE)	AT3	3-D	6
1641	Lines (COORD)	AT3	Coo	5	1733	An Even Code w/s	AT2	Map	3
					1734	An Islamic Design w/s	AT4	L\&S	7
1643	Lucky Dip	AT4	Pro	4	1735	Centimetres	AT3	Mea	1/2
					1736	Algebra Pairs	AT2	Alg	8
1646	Probability Kitty	AT4	Pro	8	1737	Route Six	AT2	Fra	6
1647	Weaving w/s	AT3	Sha	7	1738	Calcumaze	AT2	Mul	6
1648	Number Clues	AT2	PNo	3					
1649	Walking to School	AT2	Rat	4	1740	About How Much?	AT3	Mea	4
1650	Take Part (DIEE)	ReP			1741	Make Half	AT3	A\&P	5
1651	Frogs (MATH PUZ)	AT2	PaG	5	1742	The Game of 20	AT2	Mul	6
1652	Jugs (MATH PUZ)	AT2	Seq	7	1743	Decimal Products	AT2	Dec	5
1653	Master (MATH PUZ)	AT4	L\&S	7	1744	Yes/No	AT3	PSh	6
1654	Race Game (MOVE)	AT3	TrN	7	1745	Identify (PROP/NO)	AT2	PNo	5
1655	The Factor Game	AT2	PNo	5	1746	Define (PROP/NO)	AT2	PNo	6
1656	The Lost Divide	AT2	Div	6	1747	Darts (NUM)	AT2	Sub	4
1657	The Great Divide	AT2	Div	7					
1658	The Smith Family Circus	AT2	PNo	7	1749	Decimal Jigsaw	AT2	Dec	5
1659	Mind Reversal	AT2	Pag	5	1750	Layers	AT3	SAN	4
1660	The Champion Flea	AT2	Rat	7	1751	Decimal Lists	AT2	Dec	4
					1752	Under a Magnitying Glass	AT2	Rat	5
1662	Get to One	AT2	Mix		1753	Matching Pairs w/s	AT3	Mea	4
1663	Largest and Smallest	AT2	PV/N	3	1754	Chinese Number Puzzle (box)	AT2	PV/N	6
					1755	Hopslide (MATH PUZ)	AT4	L\&S	4
1665	$(x+1)^{2}$	AT2	Alg	7	1756	Tadpoles (MATH PUZ)	AT2	Pag	4
1666	Tower (SENSE/NO)	AT2	Fra	6	1757	Airline Networks	AT3	Top	5
1667	Pilot (MOVE)	АТЗ	Ang	6	1758	Co-ordinate Messages w/s	AT3	Coo	3
1668	Mapping Puzzle	AT2	Map	4	1759	Shapes That Can Grow w/s	AT3	S/En	6
1669	Sim w/s	AT3	PSh	1/2	1760	One Straight Cut w/s	AT3	Sha	6
1670	Find the Fakes	AT4	Pro	8	1761	Gelosia Problems w/s	AT2	Mul	6
1671	Multiplication Jigsaw (box)	AT2	Mul	1/2	1762	From A to B	AT3	Trig	7
1672	Soma Solids	AT3	3-D	6	1763	Circles Triangles and Hexagons	AT3	CiM	EP
1673	HCF and LCM	AT2	PNo	7	1764	Tangled Quadriaterals	AT3	PSh	6
					1765	Two by Two	AT3	3-D	3
1675	Board Order	AT3	CTr	4	1766	Flying Engineers	AT4	L\&S	7
1676	Pythagorean Triples	AT2	Equ	EP	1767	Addsupto (NUM)	AT2	Add	5
1677	Proof by Contradiction	AT2	PNo	EP	1768	Zig Zags w/s	AT3	Mea	3
1679	Spheres	AT3	3-D	EP	1770	The Lewis Family	AT4	L\&S	6
1680	Reflect-a-Bug	AT3	Ref	1/2	1771	Early Egyptian Fractions	AT2	Fra	7
1681	Folding	AT3	PSh	EP	1772	Four Triangles	AT3	PSh	6
1682	Number Jumble	AT2	Alg	8	1773	Two Triangles	AT3	PSh	6
1683	A Square Puzzle (box)	AT2	Div	3	1774	Modelling with Graphs	AT2	UGr	8
1684	A Problem of Power	AT2	P\&R	-	1775	Parners	AT2	Alg	EP
1685	Mik Crate	AT4	L\&S	6	1776	Spirals (INVEST)	ReP.		
1686	Square	АТЗ	A\&P	7	1777	Avoid Each Other (MOVE Pg 30)	AT3	TrN	7
1687	Change	AT2	Add	3	1778	Jumping (MATH PUZ)	AT2	PaG	6
1688	Square Jigsaw (box)	AT3	CTr	8	1779	Lineover (GRAPH)	AT2	Gra	EP
1689	Fraction Flags	AT2	Fra	5					
1690	Logical Kitty	AT4	Pro	4	1782	To be Continued	AT2	Mul	5
1691	Predict (PROP/NO)	AT2	PaG	7	1783	Calculating Booklet	O.R.		
					1784	Big Wheel	AT3	Trig	EP
1696	Car Trial Results	AT2	Rat	6	1785	Invest. Queens (MOVE Pg 32)	AT2	PaG	7
1697	Motor Cycle Ratios	AT2	UGr	8	1786	Which Number?	AT2	PV/N	5
1698	Identikit	AT3	PSh	5	1787	Angle 360 ${ }^{\text {(}}$ (${ }^{\text {anGLE) }}$	AT3	Ang	5
1699	Fifteen Game	AT2	Add	3	1788	Blocked (poster)	AT4	L\&S	8
					1790	The Chinese Triangle	AT2	Pag	7
					1791	Getting Into Shape (box)	AT3	PSh	4
					1792	Feeling Hungry?	AT4	DDa	5
					1793	Cuneiform Numbers	AT2	PV/N	EP
					1794	Building Cubes	AT3	3-D	6
					1795	Identical Halves w/s	AT3	PSh	EP
					1796	Plotter (GRAPH)	ReP.		
					1798	Quilts (INVEST)	AT2	PaG	6
					1799	Boxes w/s	AT2	DNo	4

1800	Gelosia for Decimals	AT2	Dec	7
1812	Find Four Squares w/s	AT3	PSh	3
1813	Crossword w/s	AT2	Mix	3
1818	Helicopter Photographs	AT2	UGr	7
1820	Parallels (GRAPH)	AT2	Gra	7
1821	Overtaking	AT2	UGr	7
1822	Product of Primes	AT2	Mul	7
1824	Silver Earrings w/s	AT3	A\&P	4
1825	Exactly Ten	AT2	Add	4
1826	$y=m x$ (GRAPH)	AT2	Gra	6
1828	Find the Shape w/s	AT3	PSh	3
1830	The 'Smoothing Out' Principle	AT2	UGr	8
1832	Minimum Information	AT3	Dra	EP
1833	Magic (NUM)	AT2	Mix	6
1834	Tenners (NUM)	AT2	Dec	5
1835	Magnify (SENSE/NO)	AT2	PV/N	5
1836	3 in a Line (COORD)	AT3	Coo	6
1839	Which Card is Missing?	AT4	L\&S	1/2
1840	Point And Lines (GRAPH)	AT2	Gra	EP
1841	Interlocking Squares (DIME)	AT3	PSh	1/2
1842	Shapes Jigsaw (DIME)	AT3	PSh	1/2
1843	Polygons and Right Angles	AT3	PSh	8
1844	Straight Lines w/s	AT3	Dra	4
1845	Shading Strips	AT4	Pro	4
1847	Symmetrical Triangles w/s	AT3	Ref	4
1848	Three by Three	AT4	L\&S	4
1849	100 Search w/s	AT2	Add	3
1851	Regions (GRAPH)	ReP.		
1852	Foxes \& Chickens (GRAPH)	AT2	UGr	EP
1853	Pinball (INVEST)	ReP.		
1855	Quadratic Mappings (DIME)	AT2	Map	7
1856	What Shapes? w/s	AT3	PSh	1/2
1857	The Other Side	AT3	3-D	8
1858	Bengali د৯ Piece Puzzle (box)	AT2	PV/N	5
1861	Dipsticks	AT3	SAN	7
1862	Even Animal w/s	AT2	PNo	1/2
1866	Mirror Match (DIME)	AT3	Ref	5
1867	Four Cubes	AT3	3-D	1/2
1868	Symmetry Match w/s	AT3	Ref	1/2
1872	Back to Back	AT3	3-D	4
1873	Polygon Symmetries	AT3	PSh	7
1874	Sevens Out	AT2	PV/N	3
1875	Urdu Multiples	AT2	PV/N	6
1876	Fill the Shape (DIME)	AT3	3-D	3
1877	Add a Cube or Two (DIME)	AT3	3-D	5
1878	Two Blocks (DIME)	AT3	3-D	4
1879	Build and Balance (DIME)	AT3.	3-D	7
1880	More than Two Blocks (DIME)	AT3	3-D	6
1881	Hindi Additions	AT2	PV/N	7
1882	Wedges 1 (DIME)	AT3	3-D	6
1883	Wedges 2 (DIME)	AT3	3-D	8
1885	Optimising	AT3	SAN	EP
1886	World View	AT3	A\&P	6
1889	Regular Tilings 1 (DIME)	AT3	Sha	5
1890	Regular Tilings 2 (DIME)	AT3	Sha	6
1891	Regular Tilings 3 (DIME)	AT3	Sha	6
1892	Line Symmetry B 1-3 (DIME)	AT3	Ref	5
1893	Line Symmetry B 4-6 (DIME)	AT3	Ref	7
1894	Line Symmetry B 7-10 (DIME)	AT3	Ref	7
1896	Spatial Reasoning (DIME)	AT3	Sha	4
1897	Who is the Schoolkeeper?	AT4	L\&S	5
1898	Who has the Microcomputer?	AT4	L\&S	7
1899	Number Words	AT2	PaG	3

2100	Putting it to the	AT4	Pro	7	2200	Pie Charts for Breakta	AT4	D	5
2101	Logiblock Sets	AT4	L\&S	7	2201	Vectors and Squares	AT3	TrN	7
					2202	Visiting Every Point (INVEST Pg 8	AT2	PNo	5
2103	Circle Packing	АТз	CiM	8	2203	Algebra Match w/s	AT2	Alg	7
2105	Equal Fraction Pairs	AT2	Fra	3	2205	Making 25p	AT2	Add	1/2
2106	Party Solutions	AT2	UGr	EP	2206	Exploring Sine Curves	AT3	Trig	EP
2107	Oxtam Collection w/s	AT2	Add	4	2207	Pinball Experiments	AT4	Pro	7
					2208	Best Marks	AT	AIDa	7
2109	Another Trig Line	АТЗ	Trig	8	2209	Short Orders	AT	Alg	5
2110	Number Sort w/s	AT2	PV/N	$1 / 2$	2210	Handspan	AT4	AlDa	3
2111	Rotational Symmetry Jigsaws	AT3	Rot	4	2211	Equivalent Expressions w/s	AT2	Alg	7
2112	Imaginings (Teacher)	O.R.			2212	10 Search w/s	AT2	Add	12
2113	Mystery (Calculating Pg 3)	AT2	Mix	3	2213	Sum Message w/s	AT2	Mix	1/2
2114	2 Puzzles (Calculating Pg 5)	AT2	Mix	4	2214	Shape Sequences	AT3	CTr	7
2115	Missing Digit (Calculating Pg 8)	AT2	Mix	6	2215	Identicubes	AT2	Alg	8
2116	Operations (Calculating Pg 9)	AT2	Mix	4	2216	From Matches to Mappings w/s	AT2	Map	5
2117	Rumour (Calculating Pg 10)	AT4	CDa	6	2217	Magic Circles	AT2	Add	5
2118	Ticket Sales (Calculating Pg 11)	AT2	Mix	4	2218	Origami Dodecahedron	AT3	3-D	7
2119	Patterns (Calculating Pg 12/13)	AT2	Seq	5	2219	Origami Cube	AT3	3-D	5
2120	Productive (Calculating Pg 14)	AT2	Mul	5	2220	Trig for any Triangle	AT3	Trig	EP
2121	Hot and Cold (Calculating Pg 15)	AT4	AlDa	4	2221	Jigsaws	AT2	Pag	5
2122	Target 200 (Calculating Pg 16)	AT2	Mix	5	2222	Equal Area? w/s	AT3	A\&P	6
2123	Missing Signs (Calculating Pg 17)	AT2	Mix	6	2223	Fractions to Decimals Match w/s	AT2	Dec	6
2124	Date of Bith (Calculating Pg 18/19)	AT2	Mix	5	2224	Shajad's Collection	AT2	Mix	3
2125	Escape (Calculating Pg 20/21)	AT2	PaG	5	2225	Wididife Collection	AT2	Mix	3
2126	Problems (Calculating Pg 22/23)	AT2	Or/R	6	2226	Sum Number Cards	O.R.		
2127	Tricube Codes	AT3	3-D	6	2227	5 p a line	AT2	Add	1/2
2128	Stacking	AT2	PaG	4	2228	Vector Match	AT3	TrN	6
2129	Tens and fives w/s	AT2	Mul	3	2229	Quadratics and Primes	AT2	PNo	8
2130	A Disappearing Act	AT2	Mix	EP	2230	Which has the Largest Area? w/s	AT3	A\&P	12
2131	Filing Cards w/s	AT2	PV/N	3	2231	Hexiamonds	AT3	PSh	5
2132	Cutting Corners	AT3	3-D	7	2232	Cut a Cube	AT3	3-D	7
2133	Out of $100 \mathrm{w} / \mathrm{s}$	AT2	Per	3	2233	Cafe Menu	AT2	Mix	/2
2134	Similar Rectangles?	AT2	Rat	6	2234	Defining Regions	AT2	Gra	8
2135	Grey Areas	AT3	Сім	EP	2235	Headines	AT4	DDa	6
2136	What could x be?	AT2	Equ	7	2236	25\% of What?	AT2	Per	5
2137	Using Sine and Cosine 1	AT3	Trig	8	2237	Words Won't Fail Mew/s	AT2	Alg	6
2138	Which Hand Works Hardest?	AT4	CDa	6	2238	What is the perimeter?	АТ3	A\&P	/2
2139	Tricube Symmetries	AT3	Ref	6	2239	Putting in Order w/s	AT2	PV/N	3
2140	Quadratic Solutions	AT2	Gra	EP	2240	Ask Me Another w/s	AT3	PSh	6
2141	Constructive Designs	AT3	Dra	7	2241	Cuts to Pieces	AT2	PaG	5
2142	Making Circles	АТ3	Cim	5	2242	Decimal Flags w/s	AT2	Dec	6
2143	Percentages of Money w/s	AT2	Per	4	2243	Who's Rule, Okay?	AT2	Alg	7
2144	Using Sine and Cosine 2	AT3	Trig	8	2244	Packing Balls	AT3	SAN	P
2145	Cross Stitch	АТЗ	CTr	7	2245	Rows and Columns	AT2	Add	4
2146	It's not Fair!	АТЗ	Сім	4	2246	Sieve of Eratosthenes	AT2	PNo	5
47	Odd Animal w/s	AT2	PNo	1/2	2247	More Than, Less Than	AT2	Equ	6
48	Transforming Triangles	AT3	CTr	8	2248	Snails' Trails	AT3	Mea	/2
2149	Circle Coverage	АТ3	Сім	6	2249	Gradients and Intercepts	AT2	Gra	8
2150	Pizza Paradise	АТ3	Cim	7	2250	A Puzzling Walk (poster)	AT4	L\&S	6
2151	The Root of the Problem	AT2	P\&R	6	2251	Put them in their Place w/s	AT2	Mix	7
2152	How Likely?	AT4	Pro	4	2252	Something and a Half w/s	AT2	Fra	1/2
2153	£1 Search w/s	AT2	Add	1/2	2253	Solving Inequalities	AT2	Equ	7
2154	Sum Dice	AT2	Mix	6	2254	Calculator Brackets	AT2	Mix	6
2155	Visualising	AT3	PSh	5	2255	Adding One	AT2	Fra	6
56	Fraction Squares	AT2	Fra	6	2256	Matching Fractions w/s	AT2	Fra	3
2157	Some Sums for your Mind w/s	AT2	Mix	7	2257	Right Angled Triangular Prisms	AT3	SAV	5
2158	Turning Green w/s	AT4	L\&S	1/2	2258	Substituting into Formulae	AT2	Equ	8
2159	Permutating Tricubes	AT4	Pro	8	2259	Multiplication Flags w/s	AT2	Alg	4
2160	Folding Fractions	AT2	Fra	5					
2161	Shape Names w/s	AT3	PSh	5	2261	Shape-Tiles w/s	AT3	TrN	1/2
2162	Angles and Triangles	АТЗ	APr	6	2262	Find the Route w / s	AT2	Mix	3
2163	Geometry Facts	O.R.			2263	Spreadsheet Squares	AT2	MuI	6
2164	Intormation Displayed	AT4	DDa	5	2264	Plus and Minus Grids w/s	AT2	Mix	3
					2265	Rational Numbers	AT2	PNo	8
2166	Matching Equations	AT2	Gra	8	2266	Irrational Numbers	AT2	PNo	EP
2167	Range of Area	AT3	Or/R	8	2267	Introducing Ratio	AT2	Rat	5
2168	Cube Root Calculator	AT2	P\&R	6	2268	Logo is Amazing	AT3	Ang	4
2169	Pop of Britain 1880 and 1980	AT4	DDa	7	2269	Amazing Logo	AT3	Ang	5
2170	Shape Up	АТЗ	PSh	6	2270	Measuring Pencils	AT3	Mea	4
2171	Pie Chart Match w/s	AT4	DDa	5	2271	l've got the Power	AT2	P\&R	8
2172	Two Down	AT2	Or/R	4	2272	Lines, Regions and Inequalities	AT2	Gra	7
2173	Unmarked Angles w/s	AT3	APr	6	2273	Looping Chains	AT2	Seq	5
2174	The Mode w/s	AT4	AlDa	4	2274	$\mathrm{abc} \mathrm{w} / \mathrm{s}$	AT2	Alg	5
2175	Grouping Data	AT4	AlDa	7	2275	Algebra Problems	AT2	Equ	8
2176	Talking (poster)	O.R.			2276	Curvy Tiles in LOGO	AT3	Dra	6
2177	Population Projections	AT4	AIDa	5	2277	Brackets	AT2	Alg	7
2178	Volumes	AT3	SAN	5	2278	Mapping Jigsaw w/s	AT2	Map	3
2179	Shakes and Adders	AT2	DNo	5	2279	Island Game	AT3	TrN	1/2
					2280	Equal Angles	AT3	Ang	3
2181	Big Hand ... Big Foot?	AT4	CDa	5	2281	Simultaneous Match	AT2	Gra	7
2182	Shongo Networks	AT2	PaG	7					
2183	Using Standard Form	AT2	P\&R	8	2283	Jumping	AT3	Mea	3
2184	Powers of Integers	AT2	P\&A	8	2284	BoxN (SENSEINO)	AT2	Or / R	4
					2285	GuessN (SENSE/NO)	AT2	Or/R	5
2186	Missing Pieces w/s	AT2	Mul	1/2	2286	Quadrants and Squares (DIME)	AT2	Alg	4
87	Pythagoras Plus	AT3	Trig	8	2287	Add \& Sub Squs \& Quads (DIME)	AT2	Alg	6
2188	Population Pyramids	AT4	DDa	7	2288	Algebra Tak-Tiles on a Grid (DIME)		Alg	6
2189	Strange Dice Game	AT4	Pro	4	2289	Alg Tak-Tiles without a Grid (DIME		Alg	7
2190	Twice as Many	AT2	Rat	3	2290	A New Unit of Area (DIME)	AT2	Alg	7
2191	Calculator Graphs	AT2	Gra	7	2291	Comparing Areas (DIME)	AT2	Alg	7
2192	Solving Quadratic Equations	AT2	Equ	EP	2292	Towers (box)	O.R.		
2193	Number Square Words w/s	AT2	PV/N	3	2293	Negative Sequences	AT2	Seq	5
2194	Tossing Coins (INVEST Pg 38-40)	AT4	Pro	7	2294	Sum, product \& difference	AT2	Mix	4
2195	The Higher the Better	AT2	PV/N	1/2	2295	Histograms	AT4	DDa	8
					2296	Mapping Rectangles w/s	AT2	Map	3
2197	Blue in the Face	AT3	$3-\mathrm{D}$	7	2297	Harder Negative Sequences	AT2	DNo	7
$\begin{aligned} & 2198 \\ & 2199 \end{aligned}$	Testing Dice Percentage Estimation w/s	AT4 AT2	AlDa Per	5 4					

2400-2403

2400	Circle Cut w/s	AT3	CiM	8
2401	Play Your Cards Right	AT2	PNo	3
2402	Equivalent Fractions Sort w/s	AT2	Fra	5
2403	Missing the Point	AT2	Dec	5.

Name

Network 1 - 5
April 2001 0001-2403
The grids below are designed to aid the recording of student assessment over a period of time.
Inital Teacher Assessment

Key Stage 3 Assessment

Key Stage 4 Assessment

Target					
Grade					

		5030		＂ī＂殔	\％ion 需 趷 	
		 閶 5				\％ata

of level review：Number and Algebra 2351 （2）

					come	cist		${ }_{10}^{\text {ginas }}$
，${ }^{3} 74$	Oatrso ${ }^{\text {Ofou }}$			cemen				cion
\％man	${ }_{\text {a }}$	\％itas		${ }_{\text {P108m }}^{1089}$	Selatious	$\xrightarrow{\text { Hedea }}$	atumo	
790			2274		come		0181	
cinemon		2012				\％19t5mems	\％omme	
		ceman						
930	1306							
matue	come	${ }^{\text {actione }}$				${ }_{0}^{\text {cass }}$		
		（ramen				${ }^{\text {22023 }}$（＊）	${ }^{\text {daib7 }}$	
coick		${ }^{412122}$				Remen		
		03035						
		\downarrow			${ }_{0}$			

ins	Geometrical Reasoning					Transformations					Coordin ates Co-ordinates	Construction \&Loci	
	3-D	Shape	Properties of Shape	Angle Properties	Topology	Similarityl Enlargement	Rotation	Rellection	Translation Vectors	Combined Transformations			
	Equide	$\begin{aligned} & \text { Tawiven } \\ & \begin{array}{l} \text { Tation } \\ 09006 \end{array} \end{aligned}$	$\begin{aligned} & \substack{\text { sem } \\ \text { shm } \\ \text { onse } \\ \text { o49 }} \end{aligned}$					$\begin{gathered} \text { Fovinag } \\ \text { Sudy } \\ \text { Su400 } \end{gathered}$					
			wors mach 2308					${ }^{\text {coseme }}$	$\begin{aligned} & \text { B} \text { Band } \\ & 2229 \end{aligned}$	$\begin{aligned} & \substack{\text { Maroge } \\ 1600 \\ 1609} \end{aligned}$			sin $\substack{\text { In }}$
	$\begin{gathered} \text { Foub } \\ 1006 \\ 1806 \end{gathered}$								$\begin{gathered} \text { shape } \\ \text { shese } \\ \text { ches } \\ \hline 261 \end{gathered}$	$\begin{aligned} & \text { Palememis } \\ & \text { Sonise } \\ & 0478 \end{aligned}$			¢
													$\underbrace{\text { Tix }}_{08}$
			${ }_{\text {smem }}$										

Using and applying mathematics

The assessment criteria below are to be used to assess Using and applying mathematics in the context of Number and algebra and Shape, space and measures.
Separate assessment criteria must be used for assessing Handling data at Key Stage 4.

Level	Making and monitoring decisions to solve problems	Communicating mathematically	Developing skills of mathematical reasoning
	Candidates use mathematics as an integral part of classroom activities.	Candidates represent their work with object or pictures and discuss their work.	Candidates recognise and use a simple pattern or relation ship, usually based on their experience.
7	Candidates select the mathematics for some classroom activities.	Candidates discuss their work using familiar mathematical language and are beginning to represent it using symbols and simple diagrams.	Candidates ask and respond appropriately to questions including 'What would happen if .?"
	Candidates try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise work and check results.	Candidates discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams.	Candidates show that they understand a general statement by finding particular examples that match it.
1	Candidates are developing their own strategies for solving problems and are using these strategies both in working within mathematics and in applying mathematics to practical contexts.	Candidates present information and results in a clear and organised way, explaining reasons for their presentation.	Candidates search for a pattern by trying out ideas of their own.
	In order to carry through tasks and solve mathematical problems, candidates identify and obtain necessary information; they check their results, considering whether these are sensible	Candidates show understanding of situations by describing them mathematically using symbols, words and diagrams.	Candidates make general statements of their own based on evidence they have produced and give an explanation of their reasoning.
	Candidates carry through substantial tasks and solve quite complex problems by breaking then down into smaller, more manageable tasks.	Candidates interpret, discuss and synthesise information presented in a variety of mathematical forms. Their writing explains and informs their use of diagrams.	Candidates are beginning to give a mathematical justification for their generalisations; they test them by checking particular cases.
	Starting from problems or contexts that have been presented to them, candidates introduce questions of their own, which generate fuller solutions.	Candidates examine critically and justify their choice of mathematical presentation, considering alternative approaches and explaining improvements they have made.	Candidates justify their generalisations of solutions, showing some insight into the mathematical structure of the situations being investigated. They appreciate the difference between mathematical explanation and experimental evidence.
8	Candidates develop and follow alternative approaches. They reflect on their own lines of enquiry when exploring mathematical tasks; in doing so they introduce and use a range of mathematical techniques.	Candidates convey mathematical meaning through consistent use of symbols.	Candidates examine generalisations or solutions reached in an activity, commenting constructively on the reasoning and logic employed, and make further progress in the activity as a result.
	Candidates analyse alternative approaches to problems involving a number of features or variables. They give detailed reasons for following or rejecting particular lines of enquiry.	Candidates use mathematical language and symbols accurately in presenting a convincing reasoned argument.	Candidates' report includes mathematical justifications, explaining their solutions to problems involving a number of features or variables.
	Candidates consider and evaluate a number of approaches to a substantial task. They explore extensively a context or area of mathematics with which they are unfamiliar. They apply independently a range of appropriate mathematical techniques.	Candidates use mathematical language and symbols accurately in presenting a concise reasoned argument.	Candidates provide a mathematically rigorous justification or proof of their solution to a complex problem, considering the conditions under which it remains valid.

The SMILE 2001 Network

The 2001 SMILE Network reflects the Mathematics National Curriculum 2000 and the KS3 Framework for Teaching Mathematics 2001. The Network is intended to assist teachers in planning and recording a scheme of work for each student according to their mathematical needs.

The Network can be used as a formative record of the student's progress throughout Key Stages 3 and 4 and as an aid to summative teacher assessment at the end of Key Stage 3 because the SMILE activities are arranged to reflect the sections of the Programme of Study.

A student's Network provides evidence of the extent to which the Programme of Study has been covered. The final decision about which Level Description best fits the student should be made in the light of work satisfactorily completed and understood and the teacher's knowledge of the student's mathematical ability.

The Inside of the SMILE Network - The programmes of study for mathematics

The SMILE Network contains a variety of different codes which are intended to provide help for teachers when setting work for a student. These are explained below.

World View Activities which require thought and planning before being set for students

Algebra A SMILE activity which is a worksheet - found in the SMILE Worksheet Pack. Written in lower case letters.

A SMILE activity which is not usually stored with the workcards or worksheets.

A SMILE activity. The number inside a bracket indicates a longer activity. The number gives a guide to the approximate expected length of the activity.

Up the A SMILE activity. Either investigative or practical where the work can only be
A SMILE activity which can be found in SMILE 1783 Calculating Booklet, page 16 Written in lower case letters in brackets.

2291
Activities from other publishers and SMILE software are identified by the source written in upper case letters in brackets. Full details of all these are found on the SMILE Commercial References Sheet, available from SMILE Mathematics.

The Outside of the SMILE Network

Assessment Grids To aid the recording of:

- NFER results
- termly assessment and attainment grades
- individual action targets
- SEN and IEP's

Using and applying mathematics criteria reflect the three stands for Key Stage 4.
Other Resources SMILE resources which are:

- Teacher Resources
- Support materials for students
- Additional resources

Name

MATHEMATICS

Network 4-7

April 2001 0001-2403

The grids below are designed to aid the recording of student assessment over a period of time.

Inital Teacher Assessment

Key Stage 3 Assessment

Key Stage 4 Assessment

ulations
Algedra

Equations, Formulae and Identities
Sequences, Functions and Graphs
of level review: Number and Aigebra 2351 (2)

of level review: Number and Algebra 2352 (2)				\checkmark						
	DividingInvestigation$1940 \quad(\star)$Dividing Pars1726	Carculator Brackeks Using Brackets ${ }_{1463}^{w / s}$	Δ	$\begin{aligned} & \text { Add and Subtraet } \\ & \text { Squares and } \\ & \text { Quadrants } \\ & \begin{array}{ll} \text { (DIME) } \\ 2287 & \text { (2) } \end{array} \end{aligned}$	$\begin{aligned} & \text { fandoo } \\ & \text { Coded } \\ & 0689 \end{aligned}$	$\begin{aligned} & \text { Slaicicases } \\ & 0115 \end{aligned}$	$\begin{aligned} & \text { Numbening } \\ & \text { Nopeages } \\ & \text { O6PO3 } \end{aligned}$	Number Machines (DIME) 1341	$\begin{aligned} & \text { Maponins } 10 \\ & \text { Gapong } \end{aligned}$	$\begin{aligned} & \text { No Orakes } \\ & \begin{array}{l} \text { Boncaces } \\ 0362 \end{array} \end{aligned}$
						${ }_{1313}{ }^{\text {Match Patems }}$		1341 (3)		
					Nomber		Tinch Sum	x \times ¢or Tea		
					${ }_{0}^{\text {w/ }} 184$	$\begin{aligned} & \text { Triangle } \\ & \text { Pantere } \\ & 1432 \mathrm{~s} \end{aligned}$		0187	0183	
742	1638	2154		\% 0848			Jumping		Orawn	
Mipicastion	${ }_{1}^{\text {Geturg Cliser }} 172$	(one Milion		He.Grouping	${ }_{2247}^{\text {Less man }}$	$\begin{aligned} & \text { Tink.ar } \\ & \text { Thear } \\ & 0450 \end{aligned}$	1778	P1 1343	0215	
${ }_{386}$		1961		0830			Oulls			
	${ }_{1656}^{\text {The }} 16$ Divide	${ }_{\text {Missing Dign }}^{\text {Cosel }}$		Words ${ }_{\text {Wontilal }}$	${ }^{\text {codex }}$	$\begin{aligned} & \text { Carders } \\ & \text { Tomers } \\ & 2070 \end{aligned}$	1798	1378	1826	
${ }^{17} 38$	fepeating	2115		\% ${ }^{\text {mowis }}$			$\xrightarrow{\text { Rose }}$ (iNvS		Paralel	
${ }_{\substack{\text { readsheet } \\ \text { Uares }}}$	0752	$\substack{\text { Missing } \\ \text { Dipils } \\ \text { whf }}$		Tre Algebra	0740 (2)		1731		0430	
263	$\begin{aligned} & \text { Ourkiy } \\ & \text { 10icery } \\ & 0760 \end{aligned}$	1711		${ }_{2321}$						
		$\begin{gathered} \text { Maicic } \\ 1833 \end{gathered}$		$\underset{\substack{\text { Algebra } \\ \text { Takrilles }}}{\substack{\text { and }}}$ ona			Soun			
	1454 (2)	$\begin{aligned} & \text { Missing Signs } \\ & \text { Spalindinding } \\ & 2123 \end{aligned}$		2288 (4)			1620 (*)			

of level review: Number and Algebra 2353 (2)

$\underset{\substack{x \\ \text { xutat } \\ 322}}{ }$

$\begin{gathered} \text { The gioat } \\ \text { Son } \\ 16557 \end{gathered}$	
	Fous sing 1712
	${ }_{215}{ }^{215}$
	29.9 .5 0162

\qquad \longrightarrow

Blue in the Face 2197 (*)	Origami Dodecahedron 2218	Dissection Pairs w/s 1911	$\begin{aligned} & \text { Polygon } \\ & \text { Symmeries } \\ & 1873 \quad(*) \end{aligned}$	Angles In a 1935	$\begin{aligned} & \text { About Nodes } \\ & 0342 \end{aligned}$	Four Pentominoes 1928 (2)	Line Symmety B (${ }^{4-6}$ IME) 1893 (2)	$\begin{aligned} & \text { Transiations } \\ & 1934 \end{aligned}$	Combining Transiomations 1561 (2)	Nets of Pyramids 0720	Less are! $05!$
Build and Balance 1879 (3)		$\begin{aligned} & \text { Weaving } \\ & w / 54 \\ & 1647 \end{aligned}$		$\begin{aligned} & \text { Cyclic } \\ & \text { Ouadriateral } \\ & 0165 \end{aligned}$	The inseparables 0492	Areas of Similar Shapes 1559 (2)	$\begin{aligned} & \text { Line Symmety B } \\ & \begin{array}{l} \text { (-10) } \\ \text { (OMME) } \\ 1894 \end{array} \\ & \text { (2) } \end{aligned}$	Race Game 1654	Shape Sequences 2214 (*)	$\begin{aligned} & \text { Sprallug } \\ & \text { Squarares } \\ & \text { Panems } \\ & 2031 \end{aligned}$	
Euler Solids (MA Poster) 1354							Reflections (DIME) 1337	$\begin{aligned} & \text { Joumeys } \\ & 1329 \end{aligned}$ 1329	$\begin{aligned} & \text { Cube Cuts } \\ & 0675 \quad \text { (*) } \end{aligned}$	$\begin{aligned} & \text { Constructive } \\ & \text { Densigs } \\ & 2141 \end{aligned}$	
(354 (3)							1337 (5)	Veclors and Squares 2201	Cross Slitch 2145	Tie w/s $\begin{equation*} 2058 \tag{2} \end{equation*}$	
$\begin{aligned} & 2132 \\ & \\ & \text { Cur a } \\ & \text { Cubor } \\ & 2232 \end{aligned}$								Avoiding Each Oiner $1777{ }^{\text {MoV Pg30 }}$ 1777		Ellipses by 2055	
										Painled Tyres 1912 1912	

Using and applying mathematics

The assessment criteria below are to be used to assess Using and applying mathematics in the context of Number and algebra and Shape, space and measures.
Separate assessment criteria must be used for assessing Handling data at Key Stage 4.

Level	Making and monitoring decisions to solve problems	Communicating mathematically	Developing skills of mathematical reasoning
	Candidates use mathematics as an integral part of classroom activities.	Candidates represent their work with object or pictures and discuss their work.	Candidates recognise and use a simple pattern or relation ship, usually based on their experience.
	Candidates select the mathematics for some classroom activities.	Candidates discuss their work using familiar mathematical language and are beginning to represent it using symbols and simple diagrams.	Candidates ask and respond appropriately to questions including 'What would happen if .?"
2	Candidates try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise work and check results.	Candidates discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams.	Candidates show that they understand a general statement by finding particular examples that match it.
	Candidates are developing their own strategies for solving problems and are using these strategies both in working within mathematics and in applying mathematics to practical contexts.	Candidates present information and results in a clear and organised way, explaining reasons for their presentation.	Candidates search for a pattern by trying out ideas of their own.
	In order to carry through tasks and solve mathematical problems, candidates identify and obtain necessary information; they check their results, considering whether these are sensible	Candidates show understanding of situations by describing them mathematically using symbols, words and diagrams.	Candidates make general statements of their own based on evidence they have produced and give an explanation of their reasoning.
	Candidates carry through substantial tasks and solve quite complex problems by breaking then down into smaller, more manageable tasks.	Candidates interpret, discuss and synthesise information presented in a variety of mathematical forms. Their writing explains and informs their use of diagrams.	Candidates are beginning to give a mathematical justification for their generalisations; they test them by checking particular cases.
	Starting from problems or contexts that have been presented to them, candidates introduce questions of their own, which generate fuller solutions.	Candidates examine critically and justify their choice of mathematical presentation, considering alternative approaches and explaining improvements they have made.	Candidates justify their generalisations of solutions, showing some insight into the mathematical structure of the situations being investigated. They appreciate the difference between mathematical explanation and experimental evidence.
θ	Candidates develop and follow alternative approaches. They reflect on their own lines of enquiry when exploring mathematical tasks; in doing so they introduce and use a range of mathematical techniques.	Candidates convey mathematical meaning through consistent use of symbols.	Candidates examine generalisations or solutions reached in an activity, commenting constructively on the reasoning and logic employed, and make further progress in the activity as a result.
	Candidates analyse alternative approaches to problems involving a number of features or variables. They give detailed reasons for following or rejecting particular lines of enquiry.	Candidates use mathematical language and symbols accurately in presenting a convincing reasoned argument.	Candidates' report includes mathematical justifications, explaining their solutions to problems involving a number of features or variables.
	Candidates consider and evaluate a number of approaches to a substantial task. They explore extensively a context or area of mathematics with which they are unfamiliar. They apply independently a range of appropriate mathematical techniques.	Candidates use mathematical language and symbols accurately in presenting a concise reasoned argument.	Candidates provide a mathematically rigorous justification or proof of their solution to a complex problem, considering the conditions under which it remains valid.

The SMILE 2001 Network

The 2001 SMILE Network reflects the Mathematics National Curriculum 2000 and the KS3 Framework for Teaching Mathematics 2001. The Network is intended to assist teachers in planning and recording a scheme of work for each student according to their mathematical needs.

The Network can be used as a formative record of the student's progress throughout Key Stages 3 and 4 and as an aid to summative teacher assessment at the end of Key Stage 3 because the SMILE activities are arranged to reflect the sections of the Programme of Study.

A student's Network provides evidence of the extent to which the Programme of Study has been covered. The final decision about which Level Description best fits the student should be made in the light of work satisfactorily completed and understood and the teacher's knowledge of the student's mathematical ability.

```
The Inside of the SMILE Network - The programmes of study for mathematics
The SMILE Network contains a variety of different codes which are intended to provide help for teachers
when setting work for a student. These are explained below.
World View Activities which require thought and planning before being set for students
1 8 8 6
Algebra A SMILE activity which is a worksheet - found in the SMILE Worksheet Pack.
Match w/s Written in lower case letters.
2 2 0 3
Target 200
(Calculating Pg 16)
2114
Hundred Fit A SMILE activity which is not usually stored with the workcards or worksheets.
(box) Written in lower case letters in brackets, e.g. (poster).
2 3 0 3
Solve it A SMILE activity. The number inside a bracket indicates a longer activity. The
0740 (2) number gives a guide to the approximate expected length of the activity.
Up the A SMILE activity. Either investigative or practical where the work can only be
Stairs
2185 (*)
Comparing
Areas
(DIME)
2291
A SMILE activity. Either investigative or practical where the work can only be assessed after the activity has been completed.
Activities from other publishers and SMILE software are identified by the source written in upper case letters in brackets. Full details of all these are found on the SMILE Commercial References Sheet, available from SMILE Mathematics.
```


The Outside of the SMILE Network

Assessment Grids To aid the recording of:

- NFER results
- termly assessment and attainment grades
- individual action targets
- SEN and IEP's

Using and applying mathematics criteria reflect the three stands for Key Stage 4.
Other Resources SMILE resources which are:

- Teacher Resources
- Support materials for students
- Additional resources

Teacher resources from SMILE - in numerical order

The following SMILE materials come as part of either a Full Class Set or a Single Copy Set and are not recorded on the inside of the SMILE Network.

1701 Post Half Posters Good display poster to encourage project work on area and

2112 Imaginings
2176 Talking Poster
2292 Towers (box)
2324 Reckonings
2376 Maths in Your Head
fractions.
A collection of lesson starters and enders, based upon 3-D visualisation.
Good display poster to encourage mathematical discussion.

A game for revision for Key Stages 3 \& 4, based upon Trivial Pursuit.
A collection of lesson starters and enders, based upon mental mathematics
A collection of lesson starters and enders, based upon mental mathematics

Support materials for students from SMILE - in numerical order

The following SMILE materials come as part of either a Full Class Set or a Single Copy Set and are not recorded on the inside of the SMILE Network.

1783 Calculating Booklet Each activity in this booklet has been referenced on the SMILE Network from SMILE 2113 to SMILE 2126.
2002 Real Spirals A good resource for project work on spirals.

2096 Fraction Playing Cards
2163 Geometry Facts
2226 Number Playing Cards

A resource for students, also needed for SMILE 2097 and SMILE 2105.
This is referenced on many SMILE activities where students need to find definitions of shapes and angles.
A resource for students which is referenced on many SMILE activities where students require number cards.
2323 Statisical Inv. Help Book A resource for students.
2364 Decimal Playing Cards A resource for students, also needed for SMILE 2365, SMILE 2366, SMILE 2368 and SMILE 2369.

Additional resources available from SMILE Mathematics

The following SMILE materials do not come as part of the classroom materials, but are for use as whole class lessons, to aid group work and differentiation.

Bridging Units 2 units suitable for Year 7.
Nice Ideas in one place V. 1 \& 2 Contains 25 and 20 activities respectively for KS 3 and 4.
Reasonings Contains 27 activities suitable for KS 3.
Revision through Groupwork 9 topics allowing for differentiation.
Whole Class Projects 8 projects, suitable for KS 3 and 4.

Additional resources from SMILE Mathematics for Assessment

The following pack does not come as part of the classroom materials.
Assessment Pack Provides starting activities and diagostic tests for Levels 2 to 6

Resource programs from SMILE Mathematics

The following programs do not come as part of the classroom materials.

1650 Take Part (DfEE)	1796 Plotter (GRAPH)	1903 Numbers (PROP/NO)
1702 Circle (INVEST)	1851 Regions (GRAPH)	2373 Queens (MOVE)
1776 Spirals (INVEST)	1853 Pinball (INVEST)	

Network 6 - EP

April 2001 0001-2403

The grids below are designed to aid the recording of student assessment over a period of time.
Inital Teacher Assessment

						Key Stage 2

Key Stage 3 Assessment

Key Stage 4 Assessment

Blue in the Face 2197	Origami Dodecahedron 2218	Dissection 1911 1911	Polygon Symmetries 1873 (*)	$\begin{aligned} & \text { Angles in a } \\ & \text { Semecricle } \\ & 1935 \end{aligned}$	$\begin{aligned} & \text { Aboul Nodes } \\ & 0342 \end{aligned}$	Four Pentiominoes 1928 (2)	Line Symmoty B $\stackrel{4}{4} \mathbf{- 6}$ 1893 (2)	$\begin{aligned} & \text { Translations } \\ & 1934 \end{aligned}$	Combining Translort 1561 (2)	Nets of Pyramids 0720
Build and Balance (DIME) 1879 (3)		$\begin{aligned} & \text { Weaving } \\ & \text { w/s } \\ & 1647 \end{aligned}$		Cyclic Quadriateral 0165	The inseparables 0492	Areas ol Similar Shapes	$\begin{array}{ll} \text { Line Symmetry B } \\ \begin{array}{ll} \text { B } \\ \text { (D1ME } \\ 1894 & \text { (2). } \end{array} \end{array}$	Race Game 1654	Shape Sequences 2214 (*)	$\begin{aligned} & \text { Spiralling } \\ & \text { PPuarates } \\ & \text { Panems } \end{aligned}$
Euler Solids (MA Poster) 1354							Reflections (DIME) 1337	Joumeys 1329	$\begin{aligned} & \text { Cube Cuts } \\ & 0675 \text { (*) } \end{aligned}$	Constructive Designs 2141 (3)
1354 cuting Coling Comers							1337 (5)	Vectors and Squares 2201	$\begin{aligned} & \text { Cross Stitch } \\ & 2145 \text { (*) } \end{aligned}$	Tie w/s $\begin{equation*} 2058 \tag{2} \end{equation*}$
$\begin{aligned} & 2132 \\ & \text { Cuta } \\ & \text { Cube } \\ & 2232 \end{aligned}$								Avoiding Each Other (MOVE Pg30) 1777		$\begin{aligned} & \text { Elllpses by } \\ & \text { Folding } \\ & 2055 \end{aligned}$
										Painted Tyres 1912

Wedges 2 (DIME) 1883 (3)	The Other 1857 1857	Family of Quadriaterals 0738	Regular Polygons 0731 (2)	Similar Tnangles 2027	Combined Rellections 1562 (2)	Vectmeet (MOVE) 1622	$\begin{aligned} & \text { Transtoming } \\ & \text { Tnangles } \\ & 2148 \end{aligned}$
		Polygons and Right Angles 1843 ($)^{\prime}$	$\begin{aligned} & \text { Angles in in } \\ & \text { Circles } \\ & 2062 \end{aligned}$	Lengths of Similar 1259 (2)		$\begin{aligned} & \text { Force Neet } \\ & 0894 \end{aligned}$	$\begin{aligned} & \text { Matrices and } \\ & \text { Transomations } \\ & 0797 \\ & \hline \end{aligned}$
				$\begin{array}{ll} \text { Nine } \\ \text { Pentominoes } \\ 1929 & \text { (2) } \end{array}$		$\begin{aligned} & \text { Veator } \\ & \text { Magntudes } \\ & 1013 \end{aligned}$	Square Jigsaw 1688 (2)
				$\begin{aligned} & \text { Simianty } \\ & \text { Problems } \\ & 1560 \end{aligned}$			Wedges (DIME) 1338 (5)
				Negative Scale Factor 0845			$\begin{aligned} & \text { Transtomations } \\ & 1156 \end{aligned}$

$\begin{aligned} & \text { Spheres } \\ & 1679 \end{aligned}$	$\begin{aligned} & \text { Folding } \\ & 1681 \end{aligned}$	$\begin{aligned} & \text { Simiar } \\ & \text { Soldds } \\ & 1261 \end{aligned}$	Matnces tor Rotations 1456	Rellection Matnces 1458	$\begin{aligned} & \text { Vectors } \\ & 1177 \end{aligned}$	Islamic Patterns 2093	Mnimum intormation 1832
	Identical Halves 1795	Matrices and Area 1922	Combining 1457		More Vectors 1178 (2)	ATranslomation Sechnioue 1400	
					Column Vectors 1179 (2)	$\begin{aligned} & \text { Scale } \\ & \text { Maps } \\ & 2085 \end{aligned}$	
					Dividing in a Given Aatio 1011 (2)	$\begin{aligned} & \text { Isometries } \\ & 1028 \end{aligned}$	
					$\begin{aligned} & \text { Vector } \\ & \text { Areas } \\ & 2050 \end{aligned}$	Matrices for Shears Investigation 1459	

Using and applying mathematics

The assessment criteria below are to be used to assess Using and applying mathematics in the context of Number and algebra and Shape, space and measures.
Separate assessment criteria must be used for assessing Handling data at Key Stage 4.

Level	Making and monitoring decisions to solve problems	Communicating mathematically	Developing skills of mathematical reasoning
	Candidates use mathematics as an integral part of classroom activities.	Candidates represent their work with object or pictures and discuss their work.	Candidates recognise and use a simple pattern or relation ship, usually based on their experience.
	Candidates select the mathematics for some classroom activities.	Candidates discuss their work using familiar mathematical language and are beginning to represent it using symbols and simple diagrams.	Candidates ask and respond appropriately to questions including 'What would happen if .?"
2	Candidates try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise work and check results.	Candidates discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams.	Candidates show that they understand a general statement by finding particular examples that match it.
4	Candidates are developing their own strategies for solving problems and are using these strategies both in working within mathematics and in applying mathematics to practical contexts.	Candidates present information and results in a clear and organised way, explaining reasons for their presentation.	Candidates search for a pattern by trying out ideas of their own.
	In order to carry through tasks and solve mathematical problems, candidates identify and obtain necessary information; they check their results, considering whether these are sensible	Candidates show understanding of situations by describing them mathematically using symbols, words and diagrams.	Candidates make general statements of their own based on evidence they have produced and give an explanation of their reasoning.
6	Candidates carry through substantial tasks and solve quite complex problems by breaking then down into smaller, more manageable tasks.	Candidates interpret, discuss and synthesise information presented in a variety of mathematical forms. Their writing explains and informs their use of diagrams.	Candidates are beginning to give a mathematical justification for their generalisations; they test them by checking particular cases.
	Starting from problems or contexts that have been presented to them, candidates introduce questions of their own, which generate fuller solutions.	Candidates examine critically and justify their choice of mathematical presentation, considering alternative approaches and explaining improvements they have made.	Candidates justify their generalisations of solutions, showing some insight into the mathematical structure of the situations being investigated. They appreciate the difference between mathematical explanation and experimental evidence.
8	Candidates develop and follow alternative approaches. They reflect on their own lines of enquiry when exploring mathematical tasks; in doing so they introduce and use a range of mathematical techniques.	Candidates convey mathematical meaning through consistent use of symbols.	Candidates examine generalisations or solutions reached in an activity, commenting constructively on the reasoning and logic employed, and make further progress in the activity as a result.
$\begin{array}{ll} \boldsymbol{0} \\ \text { E } \\ \hline \end{array}$	Candidates analyse alternative approaches to problems involving a number of features or variables. They give detailed reasons for following or rejecting particular lines of enquiry.	Candidates use mathematical language and symbols accurately in presenting a convincing reasoned argument.	Candidates' report includes mathematical justifications, explaining their solutions to problems involving a number of features or variables.
	Candidates consider and evaluate a number of approaches to a substantial task. They explore extensively a context or area of mathematics with which they are unfamiliar. They apply independently a range of appropriate mathematical techniques.	Candidates use mathematical language and symbols accurately in presenting a concise reasoned argument.	Candidates provide a mathematically rigorous justification or proof of their solution to a complex problem, considering the conditions under which it remains valid.

The SMILE 2001 Network

The 2001 SMILE Network reflects the Mathematics National Curriculum 2000 and the KS3 Framework for Teaching Mathematics 2001. The Network is intended to assist teachers in planning and recording a scheme of work for each student according to their mathematical needs.

The Network can be used as a formative record of the student's progress throughout Key Stages 3 and 4 and as an aid to summative teacher assessment at the end of Key Stage 3 because the SMILE activities are arranged to reflect the sections of the Programme of Study.

A student's Network provides evidence of the extent to which the Programme of Study has been covered. The final decision about which Level Description best fits the student should be made in the light of work satisfactorily completed and understood and the teacher's knowledge of the student's mathematical ability.

The Inside of the SMILE Network - The programmes of study for mathematics

The SMILE Network contains a variety of different codes which are intended to provide help for teachers when setting work for a student. These are explained below.

World View 1886	Activities which require thought and planning before being set for students.
Algebra Match w/s 2203	A SMILE activity which is a worksheet - found in the SMILE Worksheet Pack. Written in lower case letters.
Target 200 (Calculating Pg 16) 2114	A SMILE activity which can be found in SMILE 1783 Calculating Booklet, page 16 Written in lower case letters in brackets.
$\begin{aligned} & \text { Hundred Fit } \\ & \text { (box) } \\ & 2303 \end{aligned}$	A SMILE activity which is not usually stored with the workcards or worksheets. Written in lower case letters in brackets, e.g. (poster).
Solve it 0740 (2)	A SMILE activity. The number inside a bracket indicates a longer activity. The number gives a guide to the approximate expected length of the activity.
Up the Stairs 2185 (*)	A SMILE activity. Either investigative or practical where the work can only be assessed after the activity has been completed.
Comparing Areas (DIME) 2291	Activities from other publishers and SMILE software are identified by the source written in upper case letters in brackets. Full details of all these are found on the SMILE Commercial References Sheet, available from SMILE Mathematics.

The Outside of the SMILE Network

Assessment Grids \quad To aid the recording of:	
- \quad NFER results	
- termly assessment and attainment grades	
- individual action targets	
	- \quad SEN and IEP's

Using and applying mathematics criteria reflect the three stands for Key Stage 4.

Other Resources	SMILE resources which are:
	- Teacher Resources
	- \quad Support materials for students
	- Additional resources

Teacher resources from SMILE - in numerical order

The following SMILE materials come as part of either a Full Class Set or a Single Copy Set and are not recorded on the inside of the SMILE Network.

1701 Post Half Posters	Good display poster to encourage project work on area and fractions.
2112 Imaginings	A collection of lesson starters and enders, based upon 3-D visualisation. Good display poster to encourage mathematical discussion.
2176 Talking Poster	A game for revision for Key Stages $3 \& 4$ 4, based upon Trivial Pursuit.
2292 Towers (box)	A collection of lesson starters and enders, based upon mental mathematics
2324 Reckonings	A collection of lesson starters and enders, based upon mental mathematics

Support materials for students from SMILE - in numerical order

The following SMILE materials come as part of either a Full Class Set or a Single Copy Set and are not recorded on the inside of the SMILE Network.

1783 Calculating Boolklet	Each activity in this booklet has been referenced on the SMILE Network from SMILE 2113 to SMILE 2126.
2002 Real Spirals	A good resource for project work on spirals.

Additional resources available from SMILE Mathematics

The following SMILE materials do not come as part of the classroom materials, but are for use as whole class lessons, to aid group work and differentiation.

Bridging Units 2 units suitable for Year 7.
Nice Ideas in one place V. 1 \& 2 Contains 25 and 20 activities respectively for KS 3 and 4.
Reasonings Contains 27 activities suitable for KS 3.
Revision through Groupwork 9 topics allowing for differentiation.
Whole Class Projects 8 projects, suitable for KS 3 and 4.

Additional resources from SMILE Mathematics for Assessment

The following pack does not come as part of the classroom materials.
Assessment Pack
Provides starting activities and diagostic tests for Levels 2 to 6

Resource programs from SMILE Mathematics

The following programs do not come as part of the classroom materials.

1650 Take Part (DfEE)	1796 Plotter (GRAPH)	1903 Numbers (PROP/NO)
1702 Circle (INVEST)	1851 Regions (GRAPH)	2373 Queens (MOVE)
1776 Spirals (INVEST)	1853 Pinball (INVEST)	

The SMILE Worksheet pack contains one copy of the following worksheets for duplication in school.
Those marked with:

* should be duplicated onto card so that it can be used to make models, to play a game, to use as a template, etc.
+ should be duplicated onto coloured paper.
**should be made up into an 8 page booklet.
Where the name of the activity is in brackets, this indicates that an additional card is needed.

0027	Number Squares	0475c	(All Change)	1376a	(Jobs in Order)
0028	Number Squares 2	0476	Mappings	1379	Fishing
0030	Number Squares 4	0493	Sam Shape	1390	Multiplication Table Facts
0031	Find the Number 1	0510	Radar	1417a*	(Tens Counters)
0033	Find the Number 3	0550	Adding Shifts	1419a+	(Versa-Tiles)
0034	Find the Number 4	0577	Reflect	1422a	(8/12/16 - point circles)
0057	Fractions 3	0579a	(Cut-outs for Two Loops)	1463	Use Brackets!
0058	Fractions 4	0592a	(Powerful Rules)	1525	Economical Weaving
0066a*	(Napiers Rods)	0614	Powers of Ten	1555	Mystic Rose
0069	Cardioid	0617	Looking Around	1557	Spirals
0074	Sum and Product	0696a	(Number Codex)	1565	Symmetry
0098	Plaited Cube	0697	Hidden Shapes	1570	Pounds and Pence
0099	Sum and Product Again	0705	Cross Puzzles	1592	Two Cuts Investigation
0114	Nines	0713	Jumping Jack	1627	Self Portrait
0121	100 Square Patterns	0725	Race Track	1628a*	(Eight Squares cut-out)
0168	Right Angled Triangles	0730	Rotations	1629	Pentagons
0178	Rectangles	0735	Knots	1635	The Key to Success
0184	Number Puzzle	0738a	(Family of Quadrilaterals)	1636	Calculator Flags
0242	Cracking the Code	0777	Satellite Signals	1643a*	Cards (Lucky Dip)
0251	Mirror Symmetry	0808a	(Code Breaking)	1643b	Score Sheet (Lucky Dip)
0259	Shading Fractions	0824h	Pentagram (Golden Rectangle)	1647	Weaving
0264	Cartoon Co-ordinates	0824j	Rectangle (Golden Rectangle)	1668a	(Mapping Puzzle)
0272	A Vehicle Survey	0839	Rotate This Way	1669	Sim
0288	Rolling Two Dice	0845a	(Negative Scale Factor)	1679d-f	f(Spheres)
0292	Doubling Patterns	0849	Anywhere on the Number Line		Find the Uncle
0316	Counting On/Back	0852a	(Colouring Triangles)	1711	Missing Digits
0327	Centres of Rotation	0853a	(Grids)	1712	Four Signs
0330a	(Multiple Patterns)	0868	Evens	1717	Add-a-square
0341	Nodes	0869	Puzzle Worksheet	1733	An Even Code
0346	Sequences in Squares	0881	24 Squares	1734	An Islamic Design
0352	Table Squares	0894b	(Force Meet Pack)	1749a	(Decimal Jigsaw)
0354	Tom the Bowling Champ	0895	Jumps	1753	Matching Pairs
0359	How Many Colours?	0905a	(Domino Puzzle)	1758	Co-ordinate Messages
0367	Fraction Wall	1095	Percentages	1759	Shapes That Can Grow
0383	Building Shapes	1096	Marks to Percentages	1760	One Straight Cut
0384	Changing Grids	1278a	(Multiplying Directed Numbers)	1761	Gelosia Problems
0390	Surfaces	1299	Tangram Arrows	1768	Zigzag
0396	Hexagons	1309	More Vector Messages	1792a	(Feeling Hungry)
0397a*	(Operations)	1317**	Mult \& Div by 10, 100, 1000	1795	Identical Halves
0404	Solids	1321	Prism or Pyramid?	1799	Boxes
0424	How Many Routes?	1355	Halves and Quarters	1812	Find Four Squares
0448	Favourite Colours	1358	Joining Multiples	1813	Crossword
0456	Midpoint Sequences	1359	Joining Odds and Evens	1818a	(Helicopter Photographs)
0470	Nephroid	1360	Pictures from Multiples	1824	Silver Earrings

The following are likely to be needed for many of the SMILE activities.

angle indicators	dominoes	pegs
box of coins	drawing pins	pegboards
box of shapes (labelled with	elastic bands	pentominoes
names)	glue	pinboards
box of solids	logiblocks (Attribute blocks)	protractors
calculators (4 function, scientific	maps - (LT map etc.)	rotograms
and graphic)	matches	rulers (mm and cm)
centicubes	match boxes	scissors
compasses	metre rule	sellotape
computer	mirrors	set square
counters	multilink cubes	Tak-Tiles (DIME)
dice	pack of cards	tape measure
DIME solids	paper clips	

The following are needed specifically for only one or two SMILE activities.

Highway Code
Karnaugh map (4×4 grid to accommodate logiblocks) 2 loop and 3 loop boards marbles Napier's Rods (optional) newspapers
dominoes pegs
drawing pins
logiblocks (Attribute blocks)
maps - (LT map etc.)
match boxes
metre rule
mirrors
multilink cubes
paper clips

The following types of paper will be required.

1 cm square paper
1 cm square dotty paper
2 cm square paper
1 cm isometric paper
1 cm isometric dotty paper

2 cm isometric paper
100 squares
multiplication squares
plain paper
tracing paper
probability maze shopping catalogue Soma Cube stop clock thermometer Tricubes (DIME) weights

Materials to support the use of technology in the mathematics classroom.
LOGO, a spreadsheet and a geometry drawing package.
Spreadsheets from SMILE Teachers' book (SMILE)
Hints and Answers Book (SMILE)

For a list of commercially published materials which are referred to on the 2001 SMILE Network, please see the Commercial Reference Sources sheet obtainable from SMILE Mathematics.
gummed paper
card
graph paper (1 mm and 2mm) paper circles (filter papers) gummed strips

